Spaces:
Runtime error
Runtime error
""" | |
Created on Dec 13, 2018 | |
@author: Yuedong Chen | |
""" | |
from data import create_dataloader | |
from model import create_model | |
from visualizer import Visualizer | |
import copy | |
import time | |
import os | |
import torch | |
import numpy as np | |
from PIL import Image | |
def create_solver(opt): | |
instance = Solver() | |
instance.initialize(opt) | |
return instance | |
class Solver(object): | |
"""docstring for Solver""" | |
def __init__(self): | |
super(Solver, self).__init__() | |
def initialize(self, opt): | |
self.opt = opt | |
self.visual = Visualizer() | |
self.visual.initialize(self.opt) | |
def run_solver(self): | |
if self.opt.mode == "train": | |
self.train_networks() | |
else: | |
self.test_networks(self.opt) | |
def train_networks(self): | |
# init train setting | |
self.init_train_setting() | |
# for every epoch | |
for epoch in range(self.opt.epoch_count, self.epoch_len + 1): | |
# train network | |
self.train_epoch(epoch) | |
# update learning rate | |
self.cur_lr = self.train_model.update_learning_rate() | |
# save checkpoint if needed | |
if epoch % self.opt.save_epoch_freq == 0: | |
self.train_model.save_ckpt(epoch) | |
# save the last epoch | |
self.train_model.save_ckpt(self.epoch_len) | |
def init_train_setting(self): | |
self.train_dataset = create_dataloader(self.opt) | |
self.train_model = create_model(self.opt) | |
self.train_total_steps = 0 | |
self.epoch_len = self.opt.niter + self.opt.niter_decay | |
self.cur_lr = self.opt.lr | |
def train_epoch(self, epoch): | |
epoch_start_time = time.time() | |
epoch_steps = 0 | |
last_print_step_t = time.time() | |
for idx, batch in enumerate(self.train_dataset): | |
self.train_total_steps += self.opt.batch_size | |
epoch_steps += self.opt.batch_size | |
# train network | |
self.train_model.feed_batch(batch) | |
self.train_model.optimize_paras(train_gen=(idx % self.opt.train_gen_iter == 0)) | |
# print losses | |
if self.train_total_steps % self.opt.print_losses_freq == 0: | |
cur_losses = self.train_model.get_latest_losses() | |
avg_step_t = (time.time() - last_print_step_t) / self.opt.print_losses_freq | |
last_print_step_t = time.time() | |
# print loss info to command line | |
info_dict = {'epoch': epoch, 'epoch_len': self.epoch_len, | |
'epoch_steps': idx * self.opt.batch_size, 'epoch_steps_len': len(self.train_dataset), | |
'step_time': avg_step_t, 'cur_lr': self.cur_lr, | |
'log_path': os.path.join(self.opt.ckpt_dir, self.opt.log_file), | |
'losses': cur_losses | |
} | |
self.visual.print_losses_info(info_dict) | |
# plot loss map to visdom | |
if self.train_total_steps % self.opt.plot_losses_freq == 0 and self.visual.display_id > 0: | |
cur_losses = self.train_model.get_latest_losses() | |
epoch_steps = idx * self.opt.batch_size | |
self.visual.display_current_losses(epoch - 1, epoch_steps / len(self.train_dataset), cur_losses) | |
# display image on visdom | |
if self.train_total_steps % self.opt.sample_img_freq == 0 and self.visual.display_id > 0: | |
cur_vis = self.train_model.get_latest_visuals() | |
self.visual.display_online_results(cur_vis, epoch) | |
# latest_aus = model.get_latest_aus() | |
# visual.log_aus(epoch, epoch_steps, latest_aus, opt.ckpt_dir) | |
def test_networks(self, opt): | |
self.init_test_setting(opt) | |
self.test_ops() | |
def init_test_setting(self, opt): | |
self.test_dataset = create_dataloader(opt) | |
self.test_model = create_model(opt) | |
def test_ops(self): | |
for batch_idx, batch in enumerate(self.test_dataset): | |
with torch.no_grad(): | |
# interpolate several times | |
faces_list = [batch['src_img'].float().numpy()] | |
paths_list = [batch['src_path'], batch['tar_path']] | |
for idx in range(self.opt.interpolate_len): | |
cur_alpha = (idx + 1.) / float(self.opt.interpolate_len) | |
cur_tar_aus = cur_alpha * batch['tar_aus'] + (1 - cur_alpha) * batch['src_aus'] | |
# print(batch['src_aus']) | |
# print(cur_tar_aus) | |
test_batch = {'src_img': batch['src_img'], 'tar_aus': cur_tar_aus, 'src_aus':batch['src_aus'], 'tar_img':batch['tar_img']} | |
self.test_model.feed_batch(test_batch) | |
self.test_model.forward() | |
cur_gen_faces = self.test_model.fake_img.cpu().float().numpy() | |
faces_list.append(cur_gen_faces) | |
faces_list.append(batch['tar_img'].float().numpy()) | |
self.test_save_imgs(faces_list, paths_list) | |
def test_save_imgs(self, faces_list, paths_list): | |
for idx in range(len(paths_list[0])): | |
src_name = os.path.splitext(os.path.basename(paths_list[0][idx]))[0] | |
tar_name = os.path.splitext(os.path.basename(paths_list[1][idx]))[0] | |
if self.opt.save_test_gif: | |
import imageio | |
imgs_numpy_list = [] | |
for face_idx in range(len(faces_list) - 1): # remove target image | |
cur_numpy = np.array(self.visual.numpy2im(faces_list[face_idx][idx])) | |
imgs_numpy_list.extend([cur_numpy for _ in range(3)]) | |
saved_path = os.path.join(self.opt.results, "%s_%s.gif" % (src_name, tar_name)) | |
imageio.mimsave(saved_path, imgs_numpy_list) | |
else: | |
# concate src, inters, tar faces | |
concate_img = np.array(self.visual.numpy2im(faces_list[0][idx])) | |
for face_idx in range(1, len(faces_list)): | |
concate_img = np.concatenate((concate_img, np.array(self.visual.numpy2im(faces_list[face_idx][idx]))), axis=1) | |
concate_img = Image.fromarray(concate_img) | |
# save image | |
saved_path = os.path.join(self.opt.results, "%s_%s.jpg" % (src_name, tar_name)) | |
concate_img.save(saved_path) | |
print("[Success] Saved images to %s" % saved_path) | |