from .base_dataset import BaseDataset import os import random import numpy as np class CelebADataset(BaseDataset): """docstring for CelebADataset""" def __init__(self): super(CelebADataset, self).__init__() def initialize(self, opt): super(CelebADataset, self).initialize(opt) def get_aus_by_path(self, img_path): assert os.path.isfile(img_path), "Cannot find image file: %s" % img_path img_id = str(os.path.splitext(os.path.basename(img_path))[0]) return self.aus_dict[img_id] / 5.0 # norm to [0, 1] def make_dataset(self): # return all image full path in a list imgs_path = [] assert os.path.isfile(self.imgs_name_file), "%s does not exist." % self.imgs_name_file with open(self.imgs_name_file, 'r') as f: lines = f.readlines() imgs_path = [os.path.join(self.imgs_dir, line.strip()) for line in lines] imgs_path = sorted(imgs_path) return imgs_path def __getitem__(self, index): img_path = self.imgs_path[index] # load source image src_img = self.get_img_by_path(img_path) src_img_tensor = self.img2tensor(src_img) src_aus = self.get_aus_by_path(img_path) # load target image tar_img_path = random.choice(self.imgs_path) tar_img = self.get_img_by_path(tar_img_path) tar_img_tensor = self.img2tensor(tar_img) tar_aus = self.get_aus_by_path(tar_img_path) if self.is_train and not self.opt.no_aus_noise: tar_aus = tar_aus + np.random.uniform(-0.1, 0.1, tar_aus.shape) # record paths for debug and test usage data_dict = {'src_img':src_img_tensor, 'src_aus':src_aus, 'tar_img':tar_img_tensor, 'tar_aus':tar_aus, \ 'src_path':img_path, 'tar_path':tar_img_path} return data_dict