import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler from collections import OrderedDict ''' Helper functions for model Borrow tons of code from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py ''' def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': # change default flag, make sure instance norm behave as the same in both train and eval # https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/395 norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': norm_layer = None else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): if opt.lr_policy == 'lambda': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): if len(gpu_ids) > 0: # print("gpu_ids,", gpu_ids) assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) init_weights(net, init_type, gain=init_gain) return net def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): netG = None norm_layer = get_norm_layer(norm_type=norm) if which_model_netG == 'resnet_9blocks': netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif which_model_netG == 'resnet_6blocks': netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif which_model_netG == 'unet_128': netG = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif which_model_netG == 'unet_256': netG = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) else: raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG) return init_net(netG, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, which_model_netD, n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', init_gain=0.02, gpu_ids=[]): netD = None norm_layer = get_norm_layer(norm_type=norm) if which_model_netD == 'basic': netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid) elif which_model_netD == 'n_layers': netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid) elif which_model_netD == 'pixel': netD = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % which_model_netD) return init_net(netD, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## # Defines the GAN loss which uses either LSGAN or the regular GAN. # When LSGAN is used, it is basically same as MSELoss, # but it abstracts away the need to create the target label tensor # that has the same size as the input class GANLoss(nn.Module): def __init__(self, gan_type='wgan-gp', target_real_label=1.0, target_fake_label=0.0): super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_type = gan_type if self.gan_type == 'wgan-gp': self.loss = lambda x, y: -torch.mean(x) if y else torch.mean(x) elif self.gan_type == 'lsgan': self.loss = nn.MSELoss() elif self.gan_type == 'gan': self.loss = nn.BCELoss() else: raise NotImplementedError('GAN loss type [%s] is not found' % gan_type) def get_target_tensor(self, input, target_is_real): if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(input) def __call__(self, input, target_is_real): if self.gan_type == 'wgan-gp': target_tensor = target_is_real else: target_tensor = self.get_target_tensor(input, target_is_real) return self.loss(input, target_tensor) # Defines the generator that consists of Resnet blocks between a few # downsampling/upsampling operations. # Code and idea originally from Justin Johnson's architecture. # https://github.com/jcjohnson/fast-neural-style/ class ResnetGenerator(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() self.input_nc = input_nc self.output_nc = output_nc self.ngf = ngf if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): return self.model(input) # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # Defines the Unet generator. # |num_downs|: number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck class UnetGenerator(nn.Module): def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) for i in range(num_downs - 5): unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) self.model = unet_block def forward(self, input): return self.model(input) # Defines the submodule with skip connection. # X -------------------identity---------------------- X # |-- downsampling -- |submodule| -- upsampling --| class UnetSkipConnectionBlock(nn.Module): def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: return torch.cat([x, self.model(x)], 1) # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False): super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input) class PixelDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d, use_sigmoid=False): super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] if use_sigmoid: self.net.append(nn.Sigmoid()) self.net = nn.Sequential(*self.net) def forward(self, input): return self.net(input) ############################################################################## # Basic network model ############################################################################## def define_splitG(img_nc, aus_nc, ngf, use_dropout=False, norm='instance', init_type='normal', init_gain=0.02, gpu_ids=[]): norm_layer = get_norm_layer(norm_type=norm) net_img_au = SplitGenerator(img_nc, aus_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) return init_net(net_img_au, init_type, init_gain, gpu_ids) def define_splitD(input_nc, aus_nc, image_size, ndf, norm='instance', init_type='normal', init_gain=0.02, gpu_ids=[]): norm_layer = get_norm_layer(norm_type=norm) net_dis_aus = SplitDiscriminator(input_nc, aus_nc, image_size, ndf, n_layers=6, norm_layer=norm_layer) return init_net(net_dis_aus, init_type, init_gain, gpu_ids) class SplitGenerator(nn.Module): def __init__(self, img_nc, aus_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='zero'): assert(n_blocks >= 0) super(SplitGenerator, self).__init__() self.input_nc = img_nc + aus_nc self.ngf = ngf if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.Conv2d(self.input_nc, ngf, kernel_size=7, stride=1, padding=3, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, \ kernel_size=4, stride=2, padding=1, \ bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=4, stride=2, padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] self.model = nn.Sequential(*model) # color mask generator top color_top = [] color_top += [nn.Conv2d(ngf, img_nc, kernel_size=7, stride=1, padding=3, bias=False), nn.Tanh()] self.color_top = nn.Sequential(*color_top) # AUs mask generator top au_top = [] au_top += [nn.Conv2d(ngf, 1, kernel_size=7, stride=1, padding=3, bias=False), nn.Sigmoid()] self.au_top = nn.Sequential(*au_top) # from torchsummary import summary # summary(self.model.to("cuda"), (20, 128, 128)) # summary(self.color_top.to("cuda"), (64, 128, 128)) # summary(self.au_top.to("cuda"), (64, 128, 128)) # assert False def forward(self, img, au): # replicate AUs vector to match image shap and concate to construct input sparse_au = au.unsqueeze(2).unsqueeze(3) sparse_au = sparse_au.expand(sparse_au.size(0), sparse_au.size(1), img.size(2), img.size(3)) self.input_img_au = torch.cat([img, sparse_au], dim=1) embed_features = self.model(self.input_img_au) return self.color_top(embed_features), self.au_top(embed_features), embed_features class SplitDiscriminator(nn.Module): def __init__(self, input_nc, aus_nc, image_size=128, ndf=64, n_layers=6, norm_layer=nn.BatchNorm2d): super(SplitDiscriminator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.01, True) ] cur_dim = ndf for n in range(1, n_layers): sequence += [ nn.Conv2d(cur_dim, 2 * cur_dim, kernel_size=kw, stride=2, padding=padw, bias=use_bias), nn.LeakyReLU(0.01, True) ] cur_dim = 2 * cur_dim self.model = nn.Sequential(*sequence) # patch discriminator top self.dis_top = nn.Conv2d(cur_dim, 1, kernel_size=kw-1, stride=1, padding=padw, bias=False) # AUs classifier top k_size = int(image_size / (2 ** n_layers)) self.aus_top = nn.Conv2d(cur_dim, aus_nc, kernel_size=k_size, stride=1, bias=False) # from torchsummary import summary # summary(self.model.to("cuda"), (3, 128, 128)) def forward(self, img): embed_features = self.model(img) pred_map = self.dis_top(embed_features) pred_aus = self.aus_top(embed_features) return pred_map.squeeze(), pred_aus.squeeze() # https://github.com/jxgu1016/Total_Variation_Loss.pytorch/blob/master/TVLoss.py class TVLoss(nn.Module): def __init__(self, TVLoss_weight=1): super(TVLoss,self).__init__() self.TVLoss_weight = TVLoss_weight def forward(self,x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = self._tensor_size(x[:,:,1:,:]) count_w = self._tensor_size(x[:,:,:,1:]) h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum() w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum() return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size def _tensor_size(self,t): return t.size()[1]*t.size()[2]*t.size()[3]