Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Configuration files
|
8 |
+
config_file = "ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt"
|
9 |
+
frozen_model = "frozen_inference_graph.pb"
|
10 |
+
|
11 |
+
# Load model and set it to use the GPU
|
12 |
+
model = cv2.dnn.DetectionModel(frozen_model, config_file)
|
13 |
+
model.setInputSize(320, 320)
|
14 |
+
model.setInputScale(1.0 / 127.5)
|
15 |
+
model.setInputMean((127.5, 127.5, 127.5))
|
16 |
+
model.setInputSwapRB(True)
|
17 |
+
model.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
|
18 |
+
model.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
|
19 |
+
|
20 |
+
# Load class labels
|
21 |
+
classLabels = []
|
22 |
+
with open('labels.txt', 'rt') as f:
|
23 |
+
classLabels = f.read().rstrip('\n').split('\n')
|
24 |
+
|
25 |
+
def detect_objects(frame):
|
26 |
+
"""
|
27 |
+
Detect objects in a single frame and return their coordinates and names.
|
28 |
+
:param frame: Input image/frame
|
29 |
+
:return: List of detected objects with coordinates and names
|
30 |
+
"""
|
31 |
+
detections = []
|
32 |
+
|
33 |
+
# Detect objects in the frame
|
34 |
+
ClassIndex, confidence, bbox = model.detect(frame, confThreshold=0.55)
|
35 |
+
|
36 |
+
if len(ClassIndex) != 0:
|
37 |
+
for ClassInd, conf, boxes in zip(ClassIndex.flatten(), confidence.flatten(), bbox):
|
38 |
+
if ClassInd <= 80:
|
39 |
+
x, y, w, h = boxes
|
40 |
+
detected_object = {
|
41 |
+
"name": classLabels[ClassInd - 1],
|
42 |
+
"coordinates": {
|
43 |
+
"x": int(x),
|
44 |
+
"y": int(y),
|
45 |
+
"width": int(w),
|
46 |
+
"height": int(h)
|
47 |
+
}
|
48 |
+
}
|
49 |
+
detections.append(detected_object)
|
50 |
+
|
51 |
+
# Draw bounding box and label on the frame
|
52 |
+
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
53 |
+
cv2.putText(frame, classLabels[ClassInd - 1].upper(), (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
54 |
+
|
55 |
+
return frame, detections
|
56 |
+
|
57 |
+
def get_image_from_url(url):
|
58 |
+
response = requests.get(url)
|
59 |
+
image = np.asarray(bytearray(response.content), dtype="uint8")
|
60 |
+
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
|
61 |
+
return image
|
62 |
+
|
63 |
+
def detect_objects_in_image_url(url):
|
64 |
+
frame = get_image_from_url(url)
|
65 |
+
result_frame, detected_objects = detect_objects(frame)
|
66 |
+
return result_frame, detected_objects
|
67 |
+
|
68 |
+
# Define the Gradio interface
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=detect_objects_in_image_url,
|
71 |
+
inputs="text",
|
72 |
+
outputs=[gr.Image(type="numpy"), gr.JSON()],
|
73 |
+
title="Object Detection",
|
74 |
+
description="Enter an image URL to detect objects. The bounding boxes and labels will be drawn on the image, and the detected objects will be returned as JSON."
|
75 |
+
)
|
76 |
+
|
77 |
+
# Launch the interface
|
78 |
+
iface.launch()
|