File size: 11,397 Bytes
97b7ebb bceab41 97b7ebb bceab41 97b7ebb 14feef8 97b7ebb 14feef8 97b7ebb 0ade4ed 97b7ebb 14feef8 bceab41 14feef8 97b7ebb 14feef8 97b7ebb 8af2224 97b7ebb 14feef8 97b7ebb bceab41 14feef8 9e0f2ab 97b7ebb bceab41 97b7ebb 14feef8 97b7ebb 14feef8 97b7ebb 14feef8 97b7ebb 2484f91 9e0f2ab 97b7ebb 9e0f2ab 97b7ebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
import logging
import sys
import os
import re
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from crawlbase import CrawlingAPI
from langchain.output_parsers import StructuredOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Qdrant
from langchain.prompts import ChatPromptTemplate
from elevenlabs import generate, play, set_api_key
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
import random
from urllib.parse import urlparse, urlunparse
set_api_key(st.secrets["ELEVENLABS_API_KEY"])
crawling_api_key = st.secrets["CRAWLING_API_KEY"]
open_api_key = st.secrets["OPENAI_API_KEY"]
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
PAGE_TITLE: str = "Doodle"
PAGE_ICON: str = "🗨️"
st.set_page_config(page_title=PAGE_TITLE, page_icon=PAGE_ICON)
def get_llm(model_name, model_temperature, api_key, max_tokens=None):
if model_name == "text-davinci-003":
return OpenAI(temperature=model_temperature, model_name=model_name, max_tokens=max_tokens,
openai_api_key=api_key)
else:
return ChatOpenAI(temperature=model_temperature, model_name=model_name, max_tokens=max_tokens,
openai_api_key=api_key)
def is_valid_web_link(url):
parsed_url = urlparse(url)
cleaned_url = parsed_url._replace(query='')._replace(params='')
if parsed_url.scheme and parsed_url.netloc:
return urlunparse(cleaned_url)
else:
return None
@st.cache_data
def scrape_the_article(url):
api = CrawlingAPI({'token': crawling_api_key})
response = api.get(url, options={'format': 'json', 'autoparse': 'true', 'scroll': 'true'})
# dict_keys(['alert', 'title', 'favicon', 'meta', 'content', 'canonical', 'images', 'grouped_images', 'og_images', 'links'])
content = response['json']
return content
def init_session() -> None:
if 'init' not in st.session_state:
st.session_state.init = True
st.session_state.question = None
st.session_state.messages = []
@st.cache_data
def get_content_summary(content, model_name, api_key):
llm = get_llm(model_name=model_name, model_temperature=0, api_key=api_key)
format_instructions = \
"""
The output should be a markdown code snippet formatted in the following schema, including the leading and trailing \\"```json\\" and \\"```\\":
```json{
"summary": string // overall text summary
"blocks": [
{
"block_summary": string // The summary of the first block
"block_question": string // What is the question to clarify?
}, ...
]}
```
"""
prompt_template = """You are an advanced copywriter who can discuss and summarise articles. Translate the text to English if required. You instructions: 1) Write a concise summary of the whole text; 2) Break down the text into logical blocks containing unique information, extract important information for each block and write a summary using this information; 3) Generate relevant critical questions related to each block; 4) Format the output according to format instructions. Here is the text:
``` {text} ```
Format instructions: ``` {format_instructions} ```
Answer:"""
prompt = ChatPromptTemplate.from_template(template=prompt_template)
messages = prompt.format_messages(text=content, format_instructions=format_instructions)
logging.info(messages)
response = llm(messages)
logging.info(response)
output_parser = StructuredOutputParser.from_response_schemas([])
output_dict = output_parser.parse(response.content)
return output_dict
@st.cache_data
def generate_audio(text):
audio = generate(
text=text,
voice="Matthew" if random.randint(1, 10) % 2 == 0 else 'Dorothy',
model="eleven_monolingual_v1"
)
return audio
@st.cache_resource
def get_retriever(content):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300, # it depends on the retriever parameters and the model's context length
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
docs = text_splitter.create_documents([content])
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
qdrant = Qdrant.from_documents(
docs, embeddings,
location=":memory:",
collection_name="qa"
)
return qdrant
@st.cache_data
def qa(query, documents_to_search, model_name, api_key):
retriever = get_retriever(st.session_state.content)
found_docs = retriever.similarity_search(query, k=documents_to_search)
llm = get_llm(model_name=model_name, model_temperature=0, api_key=api_key)
template = \
"""
You're an experienced copywriter. Answer the question in English. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
Answer the question in a way so that the reader has no more questions. Be concise. Make sure you mention all the important information. You can add additional relevant information from yourself that you think may contribute to the overall understanding. Asses critically the provided context, chat history or own answer.
Chat History: ``` {chat_history} ```
Context: ``` {context} ```
Question: ``` {question} ```
Helpful Answer:
"""
prompt = ChatPromptTemplate.from_template(template=template)
chat_history = [AIMessage(content=' '.join(st.session_state.content_block_summary))]
messages = prompt.format_messages(context=found_docs, question=query, chat_history=chat_history)
response = llm(messages)
return response.content
def show_audio_message(message):
st.write(message)
content_summary_audio = generate_audio(message)
st.audio(content_summary_audio)
def show_question_input():
def submit_question():
if len(st.session_state.user_question_widget) != 0:
st.session_state.question = st.session_state.user_question_widget
st.session_state.user_question_widget = ''
else:
logging.info("empty user question")
st.text_area(label="Ask your question about the content of the page:",
key='user_question_widget',
on_change=submit_question)
st.button("Submit")
def on_question_button(question):
st.session_state.question = question
with st.expander("Example questions:"):
for q in st.session_state.content_block_questions:
st.button(q, on_click=on_question_button, args=[q])
def get_query_params():
if 'web_url' not in st.session_state:
params = st.experimental_get_query_params()
logging.debug(f"query parameters: {params}")
if 'web_url' in params:
web_url = params['web_url'][0]
if len(web_url) > 0:
if web_url := is_valid_web_link(web_url):
st.session_state.web_url = web_url
def show_header():
if 'web_url' in st.session_state:
col1, col2 = st.columns(2)
col1.caption(f"discussing: {st.session_state.web_url}")
if 'title' in st.session_state:
col2.caption(f"{st.session_state.title}")
def get_random_page():
return 'https://mailchi.mp/expresso/lightpeak'
def main() -> None:
try:
get_query_params()
init_session()
show_header()
if 'web_url' not in st.session_state:
st.header("Doodle")
st.image("./assets/doodle-img.jpg")
description = """\
Meet 'Doodle,' your shortcut to understanding the web! Got a lengthy article you're eyeing?
Just paste the link, and in an instant, Doodle delivers a crisp summary and intriguing questions for you to
chew on. Want to go hands-free? Doodle's text-to-speech feature will read it to you! Why the name 'Doodle'?
Just as a simple doodle can encapsulate a whole idea, we distill webpages down to their essence!
"""
st.caption(description)
st.divider()
web_url = st.text_input(label='Paste your link, e.g. https://expresso.today',
label_visibility='collapsed',
placeholder='Paste your link, e.g. https://expresso.today')
col1, _, _, _, col2 = st.columns(5)
col1.button("Doodle")
if col2.button("Random Page"):
web_url = get_random_page()
if len(web_url) > 0:
if web_url := is_valid_web_link(web_url):
st.session_state.web_url = web_url
st.experimental_rerun()
else:
st.warning(
"Whoops! That link seems to be doing the vanishing act. Could you give it another shot? Magic words: 'Valid Link, Please!' 🪄")
elif 'content' not in st.session_state:
with st.spinner(f"reading the web page '{st.session_state.web_url}' ..."):
st.session_state.web_page = scrape_the_article(st.session_state.web_url)
st.session_state.title = st.session_state.web_page['title']
st.session_state.content = st.session_state.web_page['content']
st.experimental_rerun()
elif 'content_summary' not in st.session_state:
content_summary = get_content_summary(content=st.session_state.content, model_name="gpt-3.5-turbo-16k",
api_key=open_api_key)
st.session_state.content_summary = content_summary['summary']
st.session_state.content_block_summary = [s['block_summary'] for s in content_summary['blocks']]
st.session_state.content_block_questions = [s['block_question'] for s in content_summary['blocks']]
show_audio_message(st.session_state.content_summary)
show_question_input()
elif 'question' in st.session_state and st.session_state.question is not None:
question = st.session_state.question
st.subheader(question)
st.divider()
with st.spinner(f'answering the question...'):
answer = qa(query=question, documents_to_search=20, model_name='gpt-4', api_key=open_api_key)
show_audio_message(answer)
st.session_state.question = None
show_question_input()
else:
show_question_input()
except Exception as e:
logging.error(e)
st.warning("""\
Whoops, looks like a hiccup in the system! But no worries, our tech wizards are already on
the case, working their magic. In the meantime, how about giving it another shot?
""")
if st.button("Give It Another Go!"):
st.experimental_rerun()
if __name__ == "__main__":
main()
# TODO:
# - connect to langsmith
# - chat history
# - store history externaly along with audio description and return from cache
|