Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------------ | |
# Copyright (c) 2022-2023, NVIDIA Corporation & Affiliates. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License. | |
# To view a copy of this license, visit | |
# https://github.com/NVlabs/ODISE/blob/main/LICENSE | |
# | |
# Written by Jiarui Xu | |
# ------------------------------------------------------------------------------ | |
import os | |
os.system("pip install git+https://github.com/NVlabs/ODISE.git") | |
os.system("pip freeze") | |
import itertools | |
import json | |
from contextlib import ExitStack | |
import gradio as gr | |
import numpy as np | |
import matplotlib.colors as mplc | |
import torch | |
from mask2former.data.datasets.register_ade20k_panoptic import ADE20K_150_CATEGORIES | |
from PIL import Image | |
from torch.cuda.amp import autocast | |
from detectron2.config import instantiate | |
from detectron2.data import MetadataCatalog | |
from detectron2.data import detection_utils as utils | |
from detectron2.data import transforms as T | |
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES | |
from detectron2.evaluation import inference_context | |
from detectron2.utils.env import seed_all_rng | |
from detectron2.utils.logger import setup_logger | |
from detectron2.utils.visualizer import ColorMode, Visualizer as _Visualizer, random_color | |
from odise import model_zoo | |
from odise.checkpoint import ODISECheckpointer | |
from odise.config import instantiate_odise | |
from odise.data import get_openseg_labels | |
from odise.modeling.wrapper import OpenPanopticInference | |
setup_logger() | |
logger = setup_logger(name="odise") | |
COCO_THING_CLASSES = [ | |
label | |
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True)) | |
if COCO_CATEGORIES[idx]["isthing"] == 1 | |
] | |
COCO_THING_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 1] | |
COCO_STUFF_CLASSES = [ | |
label | |
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True)) | |
if COCO_CATEGORIES[idx]["isthing"] == 0 | |
] | |
COCO_STUFF_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 0] | |
ADE_THING_CLASSES = [ | |
label | |
for idx, label in enumerate(get_openseg_labels("ade20k_150", True)) | |
if ADE20K_150_CATEGORIES[idx]["isthing"] == 1 | |
] | |
ADE_THING_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 1] | |
ADE_STUFF_CLASSES = [ | |
label | |
for idx, label in enumerate(get_openseg_labels("ade20k_150", True)) | |
if ADE20K_150_CATEGORIES[idx]["isthing"] == 0 | |
] | |
ADE_STUFF_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 0] | |
LVIS_CLASSES = get_openseg_labels("lvis_1203", True) | |
# use beautiful coco colors | |
LVIS_COLORS = list( | |
itertools.islice(itertools.cycle([c["color"] for c in COCO_CATEGORIES]), len(LVIS_CLASSES)) | |
) | |
class Visualizer(_Visualizer): | |
def draw_text( | |
self, | |
text, | |
position, | |
*, | |
font_size=None, | |
color="g", | |
horizontal_alignment="center", | |
rotation=0, | |
): | |
""" | |
Args: | |
text (str): class label | |
position (tuple): a tuple of the x and y coordinates to place text on image. | |
font_size (int, optional): font of the text. If not provided, a font size | |
proportional to the image width is calculated and used. | |
color: color of the text. Refer to `matplotlib.colors` for full list | |
of formats that are accepted. | |
horizontal_alignment (str): see `matplotlib.text.Text` | |
rotation: rotation angle in degrees CCW | |
Returns: | |
output (VisImage): image object with text drawn. | |
""" | |
if not font_size: | |
font_size = self._default_font_size | |
# since the text background is dark, we don't want the text to be dark | |
color = np.clip(color, 0, 1).tolist() | |
color = np.maximum(list(mplc.to_rgb(color)), 0.2) | |
color[np.argmax(color)] = max(0.8, np.max(color)) | |
x, y = position | |
self.output.ax.text( | |
x, | |
y, | |
text, | |
size=font_size * self.output.scale, | |
family="sans-serif", | |
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"}, | |
verticalalignment="top", | |
horizontalalignment=horizontal_alignment, | |
color=color, | |
zorder=10, | |
rotation=rotation, | |
) | |
return self.output | |
class VisualizationDemo(object): | |
def __init__(self, model, metadata, aug, instance_mode=ColorMode.IMAGE): | |
""" | |
Args: | |
model (nn.Module): | |
metadata (MetadataCatalog): image metadata. | |
instance_mode (ColorMode): | |
parallel (bool): whether to run the model in different processes from visualization. | |
Useful since the visualization logic can be slow. | |
""" | |
self.model = model | |
self.metadata = metadata | |
self.aug = aug | |
self.cpu_device = torch.device("cpu") | |
self.instance_mode = instance_mode | |
def predict(self, original_image): | |
""" | |
Args: | |
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
Returns: | |
predictions (dict): | |
the output of the model for one image only. | |
See :doc:`/tutorials/models` for details about the format. | |
""" | |
height, width = original_image.shape[:2] | |
aug_input = T.AugInput(original_image, sem_seg=None) | |
self.aug(aug_input) | |
image = aug_input.image | |
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) | |
inputs = {"image": image, "height": height, "width": width} | |
logger.info("forwarding") | |
with autocast(): | |
predictions = self.model([inputs])[0] | |
logger.info("done") | |
return predictions | |
def run_on_image(self, image): | |
""" | |
Args: | |
image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
This is the format used by OpenCV. | |
Returns: | |
predictions (dict): the output of the model. | |
vis_output (VisImage): the visualized image output. | |
""" | |
vis_output = None | |
predictions = self.predict(image) | |
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) | |
if "panoptic_seg" in predictions: | |
panoptic_seg, segments_info = predictions["panoptic_seg"] | |
vis_output = visualizer.draw_panoptic_seg( | |
panoptic_seg.to(self.cpu_device), segments_info | |
) | |
else: | |
if "sem_seg" in predictions: | |
vis_output = visualizer.draw_sem_seg( | |
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
) | |
if "instances" in predictions: | |
instances = predictions["instances"].to(self.cpu_device) | |
vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
return predictions, vis_output | |
cfg = model_zoo.get_config("Panoptic/odise_label_coco_50e.py", trained=True) | |
cfg.model.overlap_threshold = 0 | |
cfg.train.device = "cuda" if torch.cuda.is_available() else "cpu" | |
seed_all_rng(42) | |
dataset_cfg = cfg.dataloader.test | |
wrapper_cfg = cfg.dataloader.wrapper | |
aug = instantiate(dataset_cfg.mapper).augmentations | |
model = instantiate_odise(cfg.model) | |
model.to(torch.float16) | |
model.to(cfg.train.device) | |
ODISECheckpointer(model).load(cfg.train.init_checkpoint) | |
title = "ODISE" | |
description = """ | |
<p style='text-align: center'> <a href='https://jerryxu.net/ODISE' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2303.04803' target='_blank'>Paper</a> | <a href='https://github.com/NVlabs/ODISE' target='_blank'>Code</a> | <a href='https://youtu.be/Su7p5KYmcII' target='_blank'>Video</a></p> | |
Gradio demo for ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models. \n | |
You may click on of the examples or upload your own image. \n | |
ODISE could perform open vocabulary segmentation, you may input more classes (separate by comma). | |
The expected format is 'a1,a2;b1,b2', where a1,a2 are synonyms vocabularies for the first class. | |
The first word will be displayed as the class name. | |
""" # noqa | |
article = """ | |
<p style='text-align: center'><a href='https://arxiv.org/abs/2303.04803' target='_blank'>Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models</a> | <a href='https://github.com/NVlab/ODISE' target='_blank'>Github Repo</a></p> | |
""" # noqa | |
examples = [ | |
[ | |
"demo/examples/coco.jpg", | |
"black pickup truck, pickup truck; blue sky, sky", | |
["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"], | |
], | |
[ | |
"demo/examples/ade.jpg", | |
"luggage, suitcase, baggage;handbag", | |
["ADE (150 categories)"], | |
], | |
[ | |
"demo/examples/ego4d.jpg", | |
"faucet, tap; kitchen paper, paper towels", | |
["COCO (133 categories)"], | |
], | |
] | |
def build_demo_classes_and_metadata(vocab, label_list): | |
extra_classes = [] | |
if vocab: | |
for words in vocab.split(";"): | |
extra_classes.append([word.strip() for word in words.split(",")]) | |
extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))] | |
demo_thing_classes = extra_classes | |
demo_stuff_classes = [] | |
demo_thing_colors = extra_colors | |
demo_stuff_colors = [] | |
if any("COCO" in label for label in label_list): | |
demo_thing_classes += COCO_THING_CLASSES | |
demo_stuff_classes += COCO_STUFF_CLASSES | |
demo_thing_colors += COCO_THING_COLORS | |
demo_stuff_colors += COCO_STUFF_COLORS | |
if any("ADE" in label for label in label_list): | |
demo_thing_classes += ADE_THING_CLASSES | |
demo_stuff_classes += ADE_STUFF_CLASSES | |
demo_thing_colors += ADE_THING_COLORS | |
demo_stuff_colors += ADE_STUFF_COLORS | |
if any("LVIS" in label for label in label_list): | |
demo_thing_classes += LVIS_CLASSES | |
demo_thing_colors += LVIS_COLORS | |
MetadataCatalog.pop("odise_demo_metadata", None) | |
demo_metadata = MetadataCatalog.get("odise_demo_metadata") | |
demo_metadata.thing_classes = [c[0] for c in demo_thing_classes] | |
demo_metadata.stuff_classes = [ | |
*demo_metadata.thing_classes, | |
*[c[0] for c in demo_stuff_classes], | |
] | |
demo_metadata.thing_colors = demo_thing_colors | |
demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors | |
demo_metadata.stuff_dataset_id_to_contiguous_id = { | |
idx: idx for idx in range(len(demo_metadata.stuff_classes)) | |
} | |
demo_metadata.thing_dataset_id_to_contiguous_id = { | |
idx: idx for idx in range(len(demo_metadata.thing_classes)) | |
} | |
demo_classes = demo_thing_classes + demo_stuff_classes | |
return demo_classes, demo_metadata | |
def inference(image_path, vocab, label_list): | |
logger.info("building class names") | |
demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list) | |
with ExitStack() as stack: | |
inference_model = OpenPanopticInference( | |
model=model, | |
labels=demo_classes, | |
metadata=demo_metadata, | |
semantic_on=False, | |
instance_on=False, | |
panoptic_on=True, | |
) | |
stack.enter_context(inference_context(inference_model)) | |
stack.enter_context(torch.no_grad()) | |
demo = VisualizationDemo(inference_model, demo_metadata, aug) | |
img = utils.read_image(image_path, format="RGB") | |
_, visualized_output = demo.run_on_image(img) | |
return Image.fromarray(visualized_output.get_image()) | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>") | |
gr.Markdown(description) | |
input_components = [] | |
output_components = [] | |
with gr.Row(): | |
output_image_gr = gr.outputs.Image(label="Panoptic Segmentation", type="pil") | |
output_components.append(output_image_gr) | |
with gr.Row().style(equal_height=True, mobile_collapse=True): | |
with gr.Column(scale=3, variant="panel") as input_component_column: | |
input_image_gr = gr.inputs.Image(type="filepath") | |
extra_vocab_gr = gr.inputs.Textbox(default="", label="Extra Vocabulary") | |
category_list_gr = gr.inputs.CheckboxGroup( | |
choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"], | |
default=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"], | |
label="Category to use", | |
) | |
input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr]) | |
with gr.Column(scale=2): | |
examples_handler = gr.Examples( | |
examples=examples, | |
inputs=[c for c in input_components if not isinstance(c, gr.State)], | |
outputs=[c for c in output_components if not isinstance(c, gr.State)], | |
fn=inference, | |
cache_examples=torch.cuda.is_available(), | |
examples_per_page=5, | |
) | |
with gr.Row(): | |
clear_btn = gr.Button("Clear") | |
submit_btn = gr.Button("Submit", variant="primary") | |
gr.Markdown(article) | |
submit_btn.click( | |
inference, | |
input_components, | |
output_components, | |
api_name="predict", | |
scroll_to_output=True, | |
) | |
clear_btn.click( | |
None, | |
[], | |
(input_components + output_components + [input_component_column]), | |
_js=f"""() => {json.dumps( | |
[component.cleared_value if hasattr(component, "cleared_value") else None | |
for component in input_components + output_components] + ( | |
[gr.Column.update(visible=True)] | |
) | |
+ ([gr.Column.update(visible=False)]) | |
)} | |
""", | |
) | |
demo.launch() | |