Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
st.set_page_config(page_title="Text to Sentiment Analysis Audio", page_icon="π¦") | |
st.header("Text to Sentiment Analysis Audio") | |
# Define the sentiment analysis pipeline | |
senti_ana_pipeline = pipeline("text-classification", model="imljls/gpt_review_senti_1") | |
# Define the text-to-speech pipeline (replace 'your-tts-model' with the actual model name) | |
text_audio_pipeline = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") | |
def analyze_sentiment(text): | |
result = senti_ana_pipeline(text)[0] | |
sentiment = result['label'] | |
probability = result['score'] | |
return sentiment, probability | |
def format_sentiment_text(sentiment, probability): | |
return f"The sentiment of the text is {sentiment} with a probability of {probability:.2f}." | |
def text_to_audio(text): | |
audio = text_audio_pipeline(text) | |
return audio | |
input_text = st.text_input("Enter text for sentiment analysis:") | |
if input_text: | |
# Stage 1: Analyze sentiment | |
st.text('Analyzing sentiment...') | |
sentiment, probability = analyze_sentiment(input_text) | |
sentiment_text = format_sentiment_text(sentiment, probability) | |
st.write(sentiment_text) | |
# Stage 2: Convert text to audio | |
st.text('Generating audio...') | |
sentiment_text_for_audio = f"The sentiment of the input text is {sentiment}, and the probability is {probability:.2f}." | |
audio_data = text_to_audio(sentiment_text_for_audio) | |
# Play button | |
if st.button("Play Audio"): | |
st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate=audio_data['sampling_rate']) | |