imperialwool commited on
Commit
dfae564
·
1 Parent(s): 61b4717

Upload 5 files

Browse files
Files changed (5) hide show
  1. captcha_processor.py +109 -0
  2. main.py +36 -0
  3. model.h5 +3 -0
  4. temp/.nomedia +0 -0
  5. utils.py +137 -0
captcha_processor.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ from numpy import asarray as np_as_array
3
+ from numpy import all as np_all
4
+
5
+
6
+ class CaptchaProcessor:
7
+
8
+ WHITE_RGB = (255, 255, 255)
9
+
10
+ def __init__(self, data: bytes):
11
+ self.img = cv2.imdecode(
12
+ np_as_array(bytearray(data), dtype="uint8"),
13
+ cv2.IMREAD_ANYCOLOR
14
+ )
15
+
16
+ def threshold(self):
17
+ self.img = cv2.threshold(self.img, 0, 255, cv2.THRESH_OTSU)[1]
18
+
19
+ def convert_color_space(self, target_space: int):
20
+ self.img = cv2.cvtColor(self.img, target_space)
21
+
22
+ def get_background_color(self) -> tuple:
23
+ return tuple(self.img[0, 0])
24
+
25
+ def resize(self, x: int, y: int):
26
+ self.img = cv2.resize(self.img, (x, y))
27
+
28
+ def save(self, name: str):
29
+ cv2.imwrite(name, self.img)
30
+
31
+ def get_letters_color(self) -> tuple:
32
+ colors = []
33
+ for y in range(self.img.shape[1]):
34
+ for x in range(self.img.shape[0]):
35
+ color = tuple(self.img[x, y])
36
+ if color != self.WHITE_RGB: colors.append(color)
37
+ return max(set(colors), key=colors.count)
38
+
39
+ def replace_color(self, target: tuple, to: tuple):
40
+ self.img[np_all(self.img == target, axis=-1)] = to
41
+
42
+ def replace_colors(self, exception: tuple, to: tuple):
43
+ self.img[np_all(self.img != exception, axis=-1)] = to
44
+
45
+ def increase_contrast(self, alpha: float, beta: float):
46
+ self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta)
47
+
48
+ def increase_letters_size(self, add_pixels: int):
49
+ pixels = []
50
+ for y in range(self.img.shape[1]):
51
+ for x in range(self.img.shape[0]):
52
+ if self.img[x, y] == 0: pixels.append((x, y))
53
+ for y, x in pixels:
54
+ for i in range(1, add_pixels + 1):
55
+ self.img[y + i, x] = 0
56
+ self.img[y - i, x] = 0
57
+ self.img[y, x + i] = 0
58
+ self.img[y, x - i] = 0
59
+ self.img[y + i, x] = 0
60
+ self.img[y - i, x] = 0
61
+ self.img[y, x + i] = 0
62
+ self.img[y, x - i] = 0
63
+
64
+ # Отдаление символов друг от друга
65
+ # Может многократно повысить точность, но я так и не придумал правильную реализацию
66
+ def distance_letters(self, cf: float):
67
+ pixels = []
68
+ for y in range(self.img.shape[1]):
69
+ for x in range(self.img.shape[0]):
70
+ if self.img[x, y] == 0: pixels.append((x, y))
71
+ for y, x in pixels:
72
+ self.img[y, x] = 255
73
+ center = self.img.shape[1] / 2
74
+ z = self.img.shape[1] / x
75
+ if z >= 2: self.img[y, x - int((900 // x) * cf)] = 0
76
+ else: self.img[y, x + int((900 // x) * cf)] = 0
77
+
78
+ def slice_letters(self):
79
+ contours, hierarchy = cv2.findContours(self.img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
80
+ letter_image_regions = []
81
+ letters = []
82
+ for idx, contour in enumerate(contours):
83
+ if hierarchy[0][idx][3] != 0: continue
84
+ (x, y, w, h) = cv2.boundingRect(contour)
85
+ if w / h > 1.5:
86
+ half_width = int(w / 2)
87
+ letter_image_regions.append((idx, x, y, half_width, h))
88
+ letter_image_regions.append((idx, x + half_width, y, half_width, h))
89
+ else:
90
+ letter_image_regions.append((idx, x, y, w, h))
91
+ letter_image_regions = sorted(letter_image_regions, key=lambda z: z[1])
92
+ for _, x, y, w, h in letter_image_regions:
93
+ frame = self.img[y:y + h, x:x + w]
94
+ if frame.shape[1] > 35: continue
95
+ frame = cv2.resize(frame, (20, 40))
96
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
97
+ letters.append(frame)
98
+ return letters
99
+
100
+ def show(self):
101
+ cv2.imshow("Captcha Processor", self.img)
102
+ cv2.waitKey(0)
103
+
104
+ @classmethod
105
+ def from_file_name(cls, name: str):
106
+ file = open(name, "rb")
107
+ processor = cls(file.read())
108
+ file.close()
109
+ return processor
main.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import main things
2
+ from fastapi import Depends, FastAPI, Body
3
+ from fastapi.responses import JSONResponse, HTMLResponse
4
+ from uvicorn import run
5
+ from utils import predict
6
+
7
+ from fastapi_limiter import FastAPILimiter
8
+ from fastapi_limiter.depends import RateLimiter
9
+
10
+ import redis.asyncio as aioredis
11
+
12
+ # initing things
13
+ app = FastAPI()
14
+
15
+ @app.on_event("startup")
16
+ async def startup():
17
+ redis = aioredis.from_url("redis://localhost", encoding="utf-8", decode_responses=True)
18
+ await FastAPILimiter.init(redis)
19
+
20
+ @app.get("/", dependencies=[Depends(RateLimiter(times=5, minutes=1))])
21
+ @app.post("/", dependencies=[Depends(RateLimiter(times=5, minutes=1))])
22
+ async def root():
23
+ return JSONResponse({"detail":"Not Found"}, 404)
24
+
25
+ @app.get("/amino-captcha-ocr/api/v1/autoregister/version")
26
+ async def v(): return {"v": 4, "l": ""}
27
+
28
+ @app.get("/amino-captcha-ocr/api/v1/predict", dependencies=[Depends(RateLimiter(times=5, minutes=1))])
29
+ async def resolveGet():
30
+ return JSONResponse({"detail":"Use POST instead GET"}, 400)
31
+
32
+ @app.post("/amino-captcha-ocr/api/v1/predict", dependencies=[Depends(RateLimiter(times=5, minutes=1))])
33
+ async def resolvePost(data = Body()):
34
+ return await predict(data["url"])
35
+
36
+ run(app, host="0.0.0.0", port=80)
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:792c015158ffcfaadbb2a65fef9623af7fa1d243e3e1f915444f86c40049ea13
3
+ size 3730536
temp/.nomedia ADDED
File without changes
utils.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keras.models import load_model
2
+ from aiohttp import ClientSession
3
+ from numpy import expand_dims as np_expand_dims
4
+ from captcha_processor import CaptchaProcessor
5
+ from asyncio import get_running_loop
6
+ from asyncio import sleep as asyncsleep
7
+ from random import randint
8
+ import aiofiles
9
+
10
+ model = load_model("model.h5")
11
+ proxies = [
12
+ #"http://q2adq9_proton_me:[email protected]:8000",
13
+ "http://ocjjjsgs:[email protected]:6106"
14
+ ]
15
+
16
+ async def get_binary_from_link(link: str) -> bytes:
17
+ async with ClientSession() as session:
18
+ for _ in range(20):
19
+ try:
20
+ a = await session.get(link, proxy=proxies[randint(0, len(proxies)-1)])
21
+ if int(a.status) == 200:
22
+ print("Got binary")
23
+ return await a.read()
24
+ else:
25
+ await asyncsleep(0.125)
26
+ except Exception as e:
27
+ print(e)
28
+ return randint(100000, 999999)
29
+
30
+
31
+ async def predict(url: str, recursion: int = 0, fnfnfn: int = randint(1, 10000000)) -> dict:
32
+ binary = await get_binary_from_link(url)
33
+ if type(binary) == type(0):
34
+ return {
35
+ "WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
36
+ "prediction": binary,
37
+ "letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
38
+ "full_prediction": binary,
39
+ "recursion": recursion
40
+ }
41
+
42
+ async with aiofiles.open(f"/root/c-s-api/temp/{fnfnfn}.png", "wb") as outfile:
43
+ print(f"Trying to do smth with {fnfnfn}")
44
+ await outfile.write(binary)
45
+
46
+ try:
47
+ processor = CaptchaProcessor(binary)
48
+ except Exception as e:
49
+ if recursion > 10:
50
+ return {
51
+ "WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
52
+ "prediction": binary,
53
+ "letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
54
+ "full_prediction": binary,
55
+ "recursion": recursion
56
+ }
57
+ else:
58
+ print(f"1, {recursion}, {str(e)}")
59
+ return await predict(url, recursion + 1, fnfnfn)
60
+
61
+ try:
62
+ processor.replace_color(processor.get_background_color(), processor.WHITE_RGB)
63
+ processor.replace_colors(processor.get_letters_color(), processor.WHITE_RGB)
64
+ except Exception as e:
65
+ if recursion > 10:
66
+ return {
67
+ "WARNING": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
68
+ "prediction": binary,
69
+ "letters_predictions": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
70
+ "full_prediction": binary,
71
+ "recursion": recursion
72
+ }
73
+ else:
74
+ print(f"2, {recursion}, {str(e)}")
75
+ return await predict(url, recursion + 1, fnfnfn)
76
+
77
+ try:
78
+ processor.convert_color_space(6)
79
+ except Exception as e:
80
+ if recursion > 10:
81
+ return {
82
+ "WARNING": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
83
+ "prediction": binary,
84
+ "letters_predictions": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
85
+ "full_prediction": binary,
86
+ "recursion": recursion
87
+ }
88
+ else:
89
+ print(f"3, {recursion}, {str(e)}")
90
+ return await predict(url, recursion + 1, fnfnfn)
91
+
92
+ try:
93
+ processor.threshold()
94
+ except Exception as e:
95
+ if recursion > 10:
96
+ return {
97
+ "WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
98
+ "prediction": binary,
99
+ "letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
100
+ "full_prediction": binary,
101
+ "recursion": recursion
102
+ }
103
+ else:
104
+ print(f"4, {recursion}, {str(e)}")
105
+ return await predict(url, recursion + 1, fnfnfn)
106
+
107
+ # processor = CaptchaProcessor(binary)
108
+ # processor.replace_color(processor.get_background_color(), processor.WHITE_RGB)
109
+ # processor.replace_colors(processor.get_letters_color(), processor.WHITE_RGB)
110
+ # processor.convert_color_space(6)
111
+ # processor.threshold()
112
+ #except Exception as e:
113
+ # print(f"error with image, trying again {e}")
114
+ # return await predict(url, recursion + 1)
115
+
116
+ try:
117
+ processor.increase_letters_size(2)
118
+ except IndexError:
119
+ return await predict(url, recursion + 1, fnfnfn)
120
+ letters = processor.slice_letters()
121
+ if len(letters) != 6: return await predict(url, recursion + 1, fnfnfn)
122
+ shorts = []
123
+ final = ""
124
+ letters_solving = [
125
+ get_running_loop().run_in_executor(None, model.predict, np_expand_dims(letter, axis=0))
126
+ for letter in letters
127
+ ]
128
+ letters_solving = [await result for result in letters_solving]
129
+ fulls = [list(map(lambda x: float(x), letter[0])) for letter in letters_solving]
130
+ for prediction in fulls: shorts.append(prediction.index(max(*prediction)))
131
+ for short in shorts: final += str(short)
132
+ return {
133
+ "prediction": final,
134
+ "letters_predictions": shorts,
135
+ "full_prediction": fulls,
136
+ "recursion": recursion
137
+ }