llama-cpp-api / app_gradio.py
toaster61
ggml -> gguf
7fd3f9f
raw
history blame
2.15 kB
import gradio as gr
from llama_cpp import Llama
llm = Llama(model_path="./model.bin")
with open('system.prompt', 'r', encoding='utf-8') as f:
prompt = f.read()
title = "Openbuddy LLama Api"
desc = '''<h1>Hello, world!</h1>
This is showcase how to make own server with OpenBuddy's model.<br>
I'm using here 3b model just for example. Also here's only CPU power.<br>
But you can use GPU power as well!<br><br>
<h1>How to GPU?</h1>
Change <code>`CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS`</code> in Dockerfile on <code>`CMAKE_ARGS="-DLLAMA_CUBLAS=on"`</code>. Also you can try <code>`DLLAMA_CLBLAST`</code>, <code>`DLLAMA_METAL`</code> or <code>`DLLAMA_METAL`</code>.<br>
Powered by <a href="https://github.com/abetlen/llama-cpp-python">llama-cpp-python</a> and <a href="https://www.gradio.app/">Gradio</a>.<br><br>
<h1>How to test it on own machine?</h1>
You can install Docker, build image and run it. I made <code>`run-docker.sh`</code> for ya. To stop container run <code>`docker ps`</code>, find name of container and run <code>`docker stop _dockerContainerName_`</code><br>
Or you can once follow steps in Dockerfile and try it on your machine, not in Docker.<br><br>
Also it can run with quart+uvicorn! Check the repo!'''
def greet(request: str, max_tokens: int = 64, override_system_prompt: str = ""):
try:
system_prompt = override_system_prompt if override_system_prompt != "" else prompt
max_tokens = max_tokens if max_tokens > 0 and max_tokens < 256 else 64
userPrompt = system_prompt + "\n\nUser: " + request + "\nAssistant: "
except: return "ERROR 400: Not enough data"
try:
output = llm(userPrompt, max_tokens=max_tokens, stop=["User:", "\n"], echo=False)
print(output)
return output["choices"][0]["text"]
except Exception as e:
print(e)
return "ERROR 500: Server error. Check logs!!"
demo = gr.Interface(
fn=greet,
inputs=[gr.Text("Hello, how are you?"), gr.Number(64), gr.Textbox()],
outputs=["text"],
description=desc,
title=title,
allow_flagging="never"
).queue()
if __name__ == "__main__":
demo.launch()