File size: 3,067 Bytes
d2893c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689bc37
d2893c5
 
 
 
 
 
 
 
 
 
 
 
 
 
689bc37
d2893c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c019e88
d2893c5
 
 
 
689bc37
d2893c5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import torch
import random
import transformers
from transformers import T5Tokenizer, T5ForConditionalGeneration

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")

tokenizer = T5Tokenizer.from_pretrained("imranali291/flux-prompt-enhancer")
model = T5ForConditionalGeneration.from_pretrained("imranali291/flux-prompt-enhancer", device_map="auto", torch_dtype="auto")
model.to(device)

def generate(your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed):
    
    if seed == 0:
        seed = random.randint(1, 2**32-1)
    transformers.set_seed(seed)
    
    if model_precision_type == "fp16":
        dtype = torch.float16
    elif model_precision_type == "fp32":
        dtype = torch.float32

    model.to(dtype)

    repetition_penalty = float(repetition_penalty)

    input_text = f"{your_prompt}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
        
    outputs = model.generate(
        input_ids,
        max_new_tokens=max_new_tokens,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
    )
        
    better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return better_prompt


your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you want to enhanced")

max_new_tokens = gr.Slider(value=128, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output")
    
repetition_penalty = gr.Slider(value=2.5, minimum=0, maximum=3.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself")

temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs")

model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming")

top_p = gr.Slider(value=0.9, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens")

top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens")

seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

examples = [
    ["Futuristic cityscape at twilight descent.", 128, 2.5, 0.5, "fp16", 0.9, 50, 42]
]

gr.Interface(
    fn=generate,
    inputs=[your_prompt, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed],
    outputs=gr.Textbox(label="Prompt Enhancer"),
    title="Prompt Enhancer",
    description='Make your prompts more detailed!',
    examples=examples,
).launch(share=True)