File size: 2,369 Bytes
5700651
 
c529144
1f46a45
c529144
5700651
c529144
5700651
 
 
 
 
 
c529144
5700651
 
 
 
c529144
5700651
 
 
 
 
c529144
5700651
 
 
 
 
 
 
c529144
5700651
 
 
 
 
 
 
 
 
 
 
 
 
c529144
5700651
 
 
 
 
 
 
 
 
 
 
c529144
5700651
 
 
 
 
 
 
 
c529144
5700651
 
 
 
 
 
 
c529144
5700651
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import urllib.request
import PyPDF2
import re
import pandas as pd
from tqdm import tqdm

def extract_text_from_pdf(pdf_file):
    pdf_reader = PyPDF2.PdfFileReader(pdf_file)
    text = ""
    for page in range(pdf_reader.numPages):
        text += pdf_reader.getPage(page).extractText()
    return text

def extract_text_from_txt(txt_file):
    with open(txt_file, "r") as file:
        text = file.read()
    return text

def book_to_dataset(file, file_type):
    if file_type == "pdf":
        text = extract_text_from_pdf(file)
    elif file_type == "txt":
        text = extract_text_from_txt(file)
    else:
        raise ValueError("Invalid file type")
    words = re.findall(r'\w+', text)
    words_frequency = {}
    for word in words:
        words_frequency[word] = words_frequency.get(word, 0) + 1
    df = pd.DataFrame(list(words_frequency.items()), columns=["Word", "Frequency"])
    return df

def book_to_dataset_progress(file, file_type):
    if file_type == "pdf":
        text = extract_text_from_pdf(file)
    elif file_type == "txt":
        text = extract_text_from_txt(file)
    else:
        raise ValueError("Invalid file type")
    words = re.findall(r'\w+', text)
    words_frequency = {}
    for word in tqdm(words, desc="Converting..."):
        words_frequency[word] = words_frequency.get(word, 0) + 1
    df = pd.DataFrame(list(words_frequency.items()), columns=["Word", "Frequency"])
    return df

def book_converter(inputs):
    if inputs[1] == "URL":
        url = inputs[0]
        file_name = url.split("/")[-1]
        urllib.request.urlretrieve(url, file_name)
        file = file_name
        file_type = file_name.split(".")[-1]
    else:
        file = inputs[0]
        file_type = inputs[2].split(".")[-1]
    return book_to_dataset_progress(file, file_type)

inputs = gr.inputs.Column(
    [
        gr.inputs.Textbox(lines=1, default="Enter URL or choose file", element_type="url"),
        gr.inputs.Radio(["URL", "File"], default="URL"),
        gr.inputs.FileUploader(upload_label="Choose file", clear_label="Clear file",)
    ],
    label="Input"
)

interface = gr.Interface(
    book_converter,
    inputs,
    gr.outputs.Dataframe(),
    title="Book to Dataset Converter",
    description="Convert a book in pdf or txt format to a dataset that can be used to train AI models."
)

interface.launch()