Spaces:
Runtime error
Runtime error
Commit
·
676b3ba
1
Parent(s):
c37d123
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Additional import for gradio
|
10 |
+
import gradio as gr
|
11 |
+
import open3d as o3d
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
import time
|
14 |
+
|
15 |
+
import logging
|
16 |
+
|
17 |
+
|
18 |
+
def farthest_point_sample(point, npoint):
|
19 |
+
"""
|
20 |
+
Input:
|
21 |
+
xyz: pointcloud data, [N, D]
|
22 |
+
npoint: number of samples
|
23 |
+
Return:
|
24 |
+
centroids: sampled pointcloud index, [npoint, D]
|
25 |
+
"""
|
26 |
+
N, D = point.shape
|
27 |
+
xyz = point[:,:3]
|
28 |
+
centroids = np.zeros((npoint,))
|
29 |
+
distance = np.ones((N,)) * 1e10
|
30 |
+
farthest = np.random.randint(0, N)
|
31 |
+
for i in range(npoint):
|
32 |
+
centroids[i] = farthest
|
33 |
+
centroid = xyz[farthest, :]
|
34 |
+
dist = np.sum((xyz - centroid) ** 2, -1)
|
35 |
+
mask = dist < distance
|
36 |
+
distance[mask] = dist[mask]
|
37 |
+
farthest = np.argmax(distance, -1)
|
38 |
+
point = point[centroids.astype(np.int32)]
|
39 |
+
return point
|
40 |
+
|
41 |
+
def pc_norm(pc):
|
42 |
+
""" pc: NxC, return NxC """
|
43 |
+
xyz = pc[:, :3]
|
44 |
+
other_feature = pc[:, 3:]
|
45 |
+
|
46 |
+
centroid = np.mean(xyz, axis=0)
|
47 |
+
xyz = xyz - centroid
|
48 |
+
m = np.max(np.sqrt(np.sum(xyz ** 2, axis=1)))
|
49 |
+
xyz = xyz / m
|
50 |
+
|
51 |
+
pc = np.concatenate((xyz, other_feature), axis=1)
|
52 |
+
return pc
|
53 |
+
|
54 |
+
def change_input_method(input_method):
|
55 |
+
if input_method == 'File':
|
56 |
+
result = [gr.update(visible=True),
|
57 |
+
gr.update(visible=False)]
|
58 |
+
elif input_method == 'Object ID':
|
59 |
+
result = [gr.update(visible=False),
|
60 |
+
gr.update(visible=True)]
|
61 |
+
return result
|
62 |
+
|
63 |
+
|
64 |
+
def start_conversation(args):
|
65 |
+
print("[INFO] Starting conversation...")
|
66 |
+
logging.warning("Starting conversation...")
|
67 |
+
while True:
|
68 |
+
print("-" * 80)
|
69 |
+
logging.warning("-" * 80)
|
70 |
+
|
71 |
+
# Reset the conversation template
|
72 |
+
# conv.reset()
|
73 |
+
|
74 |
+
def confirm_point_cloud(point_cloud_input, answer_time):
|
75 |
+
objects = None
|
76 |
+
data = None
|
77 |
+
# object_id_input = object_id_input.strip()
|
78 |
+
|
79 |
+
print("%" * 80)
|
80 |
+
logging.warning("%" * 80)
|
81 |
+
|
82 |
+
|
83 |
+
file = point_cloud_input.name
|
84 |
+
print(f"Uploading file: {file}.")
|
85 |
+
logging.warning(f"Uploading file: {file}.")
|
86 |
+
print("%" * 80)
|
87 |
+
logging.warning("%" * 80)
|
88 |
+
|
89 |
+
manual_no_color = "no_color" in file
|
90 |
+
|
91 |
+
try:
|
92 |
+
if '.ply' in file:
|
93 |
+
pcd = o3d.io.read_point_cloud(file)
|
94 |
+
points = np.asarray(pcd.points) # xyz
|
95 |
+
colors = np.asarray(pcd.colors) # rgb, if available
|
96 |
+
# * if no colors actually, empty array
|
97 |
+
if colors.size == 0:
|
98 |
+
colors = None
|
99 |
+
elif '.npy' in file:
|
100 |
+
data = np.load(file)
|
101 |
+
if data.shape[1] >= 3:
|
102 |
+
points = data[:, :3]
|
103 |
+
else:
|
104 |
+
raise ValueError("Input array has the wrong shape. Expected: [N, 3]. Got: {}.".format(data.shape))
|
105 |
+
colors = None if data.shape[1] < 6 else data[:, 3:6]
|
106 |
+
else:
|
107 |
+
raise ValueError("Not supported data format.")
|
108 |
+
# error
|
109 |
+
except Exception as e:
|
110 |
+
print(f"[ERROR] {e}")
|
111 |
+
logging.warning(f"[ERROR] {e}")
|
112 |
+
|
113 |
+
return None, None, answer_time, None
|
114 |
+
|
115 |
+
if manual_no_color:
|
116 |
+
colors = None
|
117 |
+
|
118 |
+
if colors is not None:
|
119 |
+
# * if colors in range(0-1)
|
120 |
+
if np.max(colors) <= 1:
|
121 |
+
color_data = np.multiply(colors, 255).astype(int) # Convert float values (0-1) to integers (0-255)
|
122 |
+
# * if colors in range(0-255)
|
123 |
+
elif np.max(colors) <= 255:
|
124 |
+
color_data = colors.astype(int)
|
125 |
+
else:
|
126 |
+
color_data = np.zeros_like(points).astype(int) # Default to black color if RGB information is not available
|
127 |
+
colors = color_data.astype(np.float32) / 255 # model input is (0-1)
|
128 |
+
|
129 |
+
# Convert the RGB color data to a list of RGB strings in the format 'rgb(r, g, b)'
|
130 |
+
color_strings = ['rgb({},{},{})'.format(r, g, b) for r, g, b in color_data]
|
131 |
+
|
132 |
+
fig = go.Figure(
|
133 |
+
data=[
|
134 |
+
go.Scatter3d(
|
135 |
+
x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
136 |
+
mode='markers',
|
137 |
+
marker=dict(
|
138 |
+
size=1.2,
|
139 |
+
color=color_strings, # Use the list of RGB strings for the marker colors
|
140 |
+
)
|
141 |
+
)
|
142 |
+
],
|
143 |
+
layout=dict(
|
144 |
+
scene=dict(
|
145 |
+
xaxis=dict(visible=False),
|
146 |
+
yaxis=dict(visible=False),
|
147 |
+
zaxis=dict(visible=False)
|
148 |
+
),
|
149 |
+
paper_bgcolor='rgb(255,255,255)' # Set the background color to dark gray 50, 50, 50
|
150 |
+
),
|
151 |
+
)
|
152 |
+
|
153 |
+
points = np.concatenate((points, colors), axis=1)
|
154 |
+
if 8192 < points.shape[0]:
|
155 |
+
points = farthest_point_sample(points, 8192)
|
156 |
+
point_clouds = pc_norm(points)
|
157 |
+
point_clouds = torch.from_numpy(point_clouds).unsqueeze_(0).to(torch.float32)
|
158 |
+
|
159 |
+
answer_time = 0
|
160 |
+
|
161 |
+
return fig, answer_time, point_clouds
|
162 |
+
|
163 |
+
|
164 |
+
with gr.Blocks() as demo:
|
165 |
+
answer_time = gr.State(value=0)
|
166 |
+
point_clouds = gr.State(value=None)
|
167 |
+
# conv_state = gr.State(value=conv.copy())
|
168 |
+
gr.Markdown(
|
169 |
+
"""
|
170 |
+
# PointCloud Visualization 👀
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Column():
|
175 |
+
point_cloud_input = gr.File(visible = True, label="Upload Point Cloud File (PLY, NPY)")
|
176 |
+
output = gr.Plot()
|
177 |
+
btn = gr.Button(value="Confirm Point Cloud")
|
178 |
+
|
179 |
+
btn.click(confirm_point_cloud, inputs=[point_cloud_input, answer_time], outputs=[output, answer_time, point_clouds])
|
180 |
+
# input_choice.change(change_input_method, input_choice, [point_cloud_input, object_id_input])
|
181 |
+
# run_button.click(user, [text_input, chatbot], [text_input, chatbot], queue=False).then(answer_generate, [chatbot, answer_time, point_clouds, conv_state], chatbot).then(lambda x : x+1, answer_time, answer_time)
|
182 |
+
|
183 |
+
demo.queue()
|
184 |
+
demo.launch(server_port=args.port, share=True) # server_port=7832, share=True
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
# ! To release this demo in public, make sure to start in a place where no important data is stored.
|
188 |
+
# ! Please check 1. the lanuch dir 2. the tmp dir (GRADIO_TEMP_DIR)
|
189 |
+
# ! refer to https://www.gradio.app/guides/sharing-your-app#security-and-file-access
|
190 |
+
parser = argparse.ArgumentParser()
|
191 |
+
parser.add_argument("--model-name", type=str, \
|
192 |
+
default="RunsenXu/PointLLM_7B_v1.2")
|
193 |
+
|
194 |
+
|
195 |
+
parser.add_argument("--data_path", type=str, default="data/objaverse_data", required=False)
|
196 |
+
parser.add_argument("--pointnum", type=int, default=8192)
|
197 |
+
|
198 |
+
parser.add_argument("--log_file", type=str, default="serving_workdirs/serving_log.txt")
|
199 |
+
parser.add_argument("--tmp_dir", type=str, default="serving_workdirs/tmp")
|
200 |
+
|
201 |
+
# For gradio
|
202 |
+
parser.add_argument("--port", type=int, default=7810)
|
203 |
+
|
204 |
+
args = parser.parse_args()
|
205 |
+
|
206 |
+
# * make serving dirs
|
207 |
+
os.makedirs(os.path.dirname(args.log_file), exist_ok=True)
|
208 |
+
os.makedirs(args.tmp_dir, exist_ok=True)
|
209 |
+
|
210 |
+
# * add the current time for log name
|
211 |
+
args.log_file = args.log_file.replace(".txt", f"_{time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())}.txt")
|
212 |
+
|
213 |
+
logging.basicConfig(
|
214 |
+
filename=args.log_file,
|
215 |
+
level=logging.WARNING, # * default gradio is info, so use warning
|
216 |
+
format='%(asctime)s - %(message)s',
|
217 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
218 |
+
)
|
219 |
+
|
220 |
+
logging.warning("-----New Run-----")
|
221 |
+
logging.warning(f"args: {args}")
|
222 |
+
|
223 |
+
print("-----New Run-----")
|
224 |
+
print(f"[INFO] Args: {args}")
|
225 |
+
|
226 |
+
# * set env variable GRADIO_TEMP_DIR to args.tmp_dir
|
227 |
+
os.environ["GRADIO_TEMP_DIR"] = args.tmp_dir
|
228 |
+
|
229 |
+
# model, tokenizer, point_backbone_config, keywords, mm_use_point_start_end, conv = init_model(args)
|
230 |
+
start_conversation(args)
|