Spaces:
Running
Running
File size: 37,232 Bytes
24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 ed120b4 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 ed120b4 dfa1e52 ed120b4 dfa1e52 ed120b4 7206088 dbbe798 dfa1e52 ed120b4 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 7206088 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 269e9b8 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 dfa1e52 24a5f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
import os
import json
import numpy as np
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
OWNER = "inceptionai"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
HEADER = """
<center>
<br></br>
<h1>Arabic Leaderboards</h1>
<h2>Comprehensive Evaluation of Arabic Large Language Models</h2>
<br></br>
</center>
"""
ABOUT_SECTION = """
## About
In our `12-24` release, we introduced the `AraGen Benchmark`, along with the `3C3H` evaluation measure (aka the 3C3H Score). You can find more details about AraGen and 3C3H, [here](https://huggingface.co/blog/leaderboard-3c3h-aragen). And you can find the first version of the benchmark, `AraGen-12-24` [here](https://huggingface.co/datasets/inceptionai/AraGen). Building on that foundation, and as part of this new release, we have expanded this space to incorporate additional tasks and evaluation metrics.
In this release, we present two leaderboards:
**AraGen-03-25 (v2):**
- The AraGen Benchmark is designed to evaluate and compare the performance of Chat/Instruct Arabic Large Language Models on a suite of generative tasks that are culturally relevant to the Arab region, history, politics, cuisine ... etc. By leveraging **3C3H** as an evaluation metricβwhich assesses a model's output across six dimensions: Correctness, Completeness, Conciseness, Helpfulness, Honesty, and Harmlessnessβthe leaderboard offers a comprehensive and holistic evaluation of a modelβs chat capabilities and its ability to generate human-like and ethically responsible content.
**Instruction Following:**
- We have established a robust leaderboard that benchmarks models on Arabic and English instruction following, offering an open and comparative performance landscape for the research community. Concurrently, we released the first publicly available Arabic [dataset](https://huggingface.co/datasets/inceptionai/Arabic_IFEval) aimed at evaluating LLMs' ability to follow instructions. The Arabic IFEval samples are meticulously curated to capture the languageβs unique nuancesβsuch as diacritization and distinctive phonetic featuresβoften overlooked in generic datasets. Our dedicated linguistic team generated original samples and adapted selections from the IFEval English dataset, ensuring that the material resonates with Arabic cultural contexts and meets the highest standards of authenticity and quality.
### Why Focus on Chat Models?
Our evaluations are conducted in a generative mode, meaning that we expect models to produce complete, context-rich responses rather than simply predicting the next token as base models do. This approach not only yields results that are more explainable and nuanced compared to logit-based measurements, but it also captures elements like creativity, coherence, and ethical considerationsβproviding deeper insights into overall model performance.
### Contact
For inquiries or assistance, please join the conversation on our [Discussions Tab](https://huggingface.co/spaces/inceptionai/Arabic-Leaderboards/discussions) or reach out via [email](mailto:[email protected]).
"""
BOTTOM_LOGO = """<img src="https://huggingface.co/spaces/inceptionai/Arabic-Leaderboards/resolve/main/assets/pictures/03-25/arabic-leaderboards-colab-march-preview-free-3.png" style="width:50%;display:block;margin-left:auto;margin-right:auto;border-radius:15px;">"""
CITATION_BUTTON_TEXT = """
@misc{Arabic-Leaderboards,
author = {El Filali, Ali and Albarri, Sarah and Abouelseoud, Arwa and Kamboj, Samta and Sengupta, Neha and Nakov, Preslav},
title = {Arabic-Leaderboards: Comprehensive Evaluation of Arabic Large Language Models},
year = {2025},
publisher = {Inception},
howpublished = "url{https://huggingface.co/spaces/inceptionai/Arabic-Leaderboards}"
}
"""
CITATION_BUTTON_LABEL = """
Copy the following snippet to cite the results from all Arabic Leaderboards in this Space.
"""
def load_results():
"""
Loads the AraGen v2 results from aragen_v2_results.json and returns two dataframes:
1) df_3c3h with columns for 3C3H scores
2) df_tasks with columns for tasks scores
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "assets", "results", "aragen_v2_results.json")
with open(results_file, 'r') as f:
data = json.load(f)
# Filter out any entries that only contain '_last_sync_timestamp'
filtered_data = []
for entry in data:
if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
continue
filtered_data.append(entry)
data = filtered_data
data_3c3h = []
data_tasks = []
for model_data in data:
meta = model_data.get('Meta', {})
model_name = meta.get('Model Name', 'UNK')
revision = meta.get('Revision', 'UNK')
precision = meta.get('Precision', 'UNK')
params = meta.get('Params', 'UNK')
try:
model_size_numeric = float(params)
except (ValueError, TypeError):
model_size_numeric = np.inf
scores_data = model_data.get('claude-3.5-sonnet Scores', {})
scores_3c3h = scores_data.get('3C3H Scores', {})
scores_tasks = scores_data.get('Tasks Scores', {})
formatted_scores_3c3h = {k: v*100 for k, v in scores_3c3h.items()}
formatted_scores_tasks = {k: v*100 for k, v in scores_tasks.items()}
data_entry_3c3h = {
'Model Name': model_name,
'Revision': revision,
'License': meta.get('License', 'UNK'),
'Precision': precision,
'Model Size': model_size_numeric,
'3C3H Score': formatted_scores_3c3h.get("3C3H Score", np.nan),
'Correctness': formatted_scores_3c3h.get("Correctness", np.nan),
'Completeness': formatted_scores_3c3h.get("Completeness", np.nan),
'Conciseness': formatted_scores_3c3h.get("Conciseness", np.nan),
'Helpfulness': formatted_scores_3c3h.get("Helpfulness", np.nan),
'Honesty': formatted_scores_3c3h.get("Honesty", np.nan),
'Harmlessness': formatted_scores_3c3h.get("Harmlessness", np.nan),
}
data_3c3h.append(data_entry_3c3h)
data_entry_tasks = {
'Model Name': model_name,
'Revision': revision,
'License': meta.get('License', 'UNK'),
'Precision': precision,
'Model Size': model_size_numeric,
**formatted_scores_tasks
}
data_tasks.append(data_entry_tasks)
df_3c3h = pd.DataFrame(data_3c3h)
df_tasks = pd.DataFrame(data_tasks)
score_columns_3c3h = ['3C3H Score', 'Correctness', 'Completeness', 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']
df_3c3h[score_columns_3c3h] = df_3c3h[score_columns_3c3h].round(4)
max_model_size_value = 1000
df_3c3h['Model Size Filter'] = df_3c3h['Model Size'].replace(np.inf, max_model_size_value)
if '3C3H Score' in df_3c3h.columns:
df_3c3h = df_3c3h.sort_values(by='3C3H Score', ascending=False)
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
else:
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
task_columns = [col for col in df_tasks.columns if col not in ['Model Name', 'Revision', 'License', 'Precision', 'Model Size', 'Model Size Filter']]
if task_columns:
df_tasks[task_columns] = df_tasks[task_columns].round(4)
df_tasks['Model Size Filter'] = df_tasks['Model Size'].replace(np.inf, max_model_size_value)
if task_columns:
first_task = task_columns[0]
df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
else:
df_tasks = df_tasks.sort_values(by='Model Name', ascending=True)
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
return df_3c3h, df_tasks, task_columns
def load_if_data():
"""
Loads the instruction-following data from ifeval_results.jsonl
and returns a dataframe with relevant columns,
converting decimal values to percentage format.
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "assets", "results", "ifeval_results.jsonl")
data = []
with open(results_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
df = pd.DataFrame(data)
# Convert numeric columns
numeric_cols = ["En Prompt-lvl", "En Instruction-lvl", "Ar Prompt-lvl", "Ar Instruction-lvl"]
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors="coerce")
# Compute average accuracy for En and Ar
df["Average Accuracy (En)"] = (df["En Prompt-lvl"] + df["En Instruction-lvl"]) / 2
df["Average Accuracy (Ar)"] = (df["Ar Prompt-lvl"] + df["Ar Instruction-lvl"]) / 2
# Convert them to percentage format (e.g., 0.871 -> 87.1)
for col in numeric_cols:
df[col] = (df[col] * 100).round(1)
df["Average Accuracy (En)"] = (df["Average Accuracy (En)"] * 100).round(1)
df["Average Accuracy (Ar)"] = (df["Average Accuracy (Ar)"] * 100).round(1)
# Handle size as numeric
def parse_size(x):
try:
return float(x)
except:
return np.inf
df["Model Size"] = df["Size (B)"].apply(parse_size)
# Add a filter column for size
max_model_size_value = 1000
df["Model Size Filter"] = df["Model Size"].replace(np.inf, max_model_size_value)
# Sort by "Average Accuracy (Ar)" as an example
df = df.sort_values(by="Average Accuracy (Ar)", ascending=False)
df = df.reset_index(drop=True)
df.insert(0, "Rank", range(1, len(df) + 1))
return df
def submit_model(model_name, revision, precision, params, license, modality):
df_3c3h, df_tasks, _ = load_results()
existing_models_results = df_3c3h[['Model Name', 'Revision', 'Precision']]
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
df_pending = load_requests('pending')
df_finished = load_requests('finished')
model_exists_in_results = (
(existing_models_results['Model Name'] == model_name) &
(existing_models_results['Revision'] == revision) &
(existing_models_results['Precision'] == precision)
).any()
if model_exists_in_results:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
if not df_pending.empty:
existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
model_exists_in_pending = (
(existing_models_pending['model_name'] == model_name) &
(existing_models_pending['revision'] == revision) &
(existing_models_pending['precision'] == precision)
).any()
if model_exists_in_pending:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"
if not df_finished.empty:
existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
model_exists_in_finished = (
(existing_models_finished['model_name'] == model_name) &
(existing_models_finished['revision'] == revision) &
(existing_models_finished['precision'] == precision)
).any()
if model_exists_in_finished:
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
api = HfApi()
try:
_ = api.model_info(model_name)
except Exception:
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
status = "PENDING"
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"params": params,
"status": status,
"modality": modality
}
submission_json = json.dumps(submission, indent=2)
org_model = model_name.split('/')
if len(org_model) != 2:
return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
try:
hf_api_token = os.environ.get('HF_API_TOKEN', None)
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
return f"**Error: Could not submit the model. {str(e)}**"
return f"**Model '{model_name}' has been submitted for evaluation.**"
def load_requests(status_folder):
api = HfApi()
requests_data = []
folder_path_in_repo = status_folder
hf_api_token = os.environ.get('HF_API_TOKEN', None)
try:
files_info = api.list_repo_files(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
print(f"Error accessing dataset repository: {e}")
return pd.DataFrame()
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
for file_path in files_in_folder:
try:
local_file_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=file_path,
repo_type="dataset",
token=hf_api_token
)
with open(local_file_path, 'r') as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue
df = pd.DataFrame(requests_data)
return df
def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
df_ = load_results()[0].copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_['Model Name'].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = 'Missing' in precision_filters
selected_precisions = [p for p in precision_filters if p != 'Missing']
if include_missing:
df_ = df_[
(df_['Precision'].isin(selected_precisions)) |
(df_['Precision'] == 'UNK') |
(df_['Precision'].isna())
]
else:
df_ = df_[df_['Precision'].isin(selected_precisions)]
if license_filters:
include_missing = 'Missing' in license_filters
selected_licenses = [l for l in license_filters if l != 'Missing']
if include_missing:
df_ = df_[
(df_['License'].isin(selected_licenses)) |
(df_['License'] == 'UNK') |
(df_['License'].isna())
]
else:
df_ = df_[df_['License'].isin(selected_licenses)]
df_ = df_[(df_['Model Size Filter'] >= min_size) & (df_['Model Size Filter'] <= max_size)]
if 'Rank' in df_.columns:
df_ = df_.drop(columns=['Rank'])
df_ = df_.reset_index(drop=True)
df_.insert(0, 'Rank', range(1, len(df_)+1))
fixed_column_order = [
"Rank",
"Model Name",
"3C3H Score",
"Correctness",
"Completeness",
"Conciseness",
"Helpfulness",
"Honesty",
"Harmlessness",
"Revision",
"License",
"Precision",
"Model Size"
]
selected_cols = [col for col in fixed_column_order if col in selected_cols and col in df_.columns]
return df_[selected_cols]
def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size, task_columns):
df_ = load_results()[1].copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
if search_query:
df_ = df_[df_['Model Name'].str.contains(search_query, case=False, na=False)]
if precision_filters:
include_missing = 'Missing' in precision_filters
selected_precisions = [p for p in precision_filters if p != 'Missing']
if include_missing:
df_ = df_[
(df_['Precision'].isin(selected_precisions)) |
(df_['Precision'] == 'UNK') |
(df_['Precision'].isna())
]
else:
df_ = df_[df_['Precision'].isin(selected_precisions)]
if license_filters:
include_missing = 'Missing' in license_filters
selected_licenses = [l for l in license_filters if l != 'Missing']
if include_missing:
df_ = df_[
(df_['License'].isin(selected_licenses)) |
(df_['License'] == 'UNK') |
(df_['License'].isna())
]
else:
df_ = df_[df_['License'].isin(selected_licenses)]
df_ = df_[(df_['Model Size Filter'] >= min_size) & (df_['Model Size Filter'] <= max_size)]
if 'Rank' in df_.columns:
df_ = df_.drop(columns=['Rank'])
if task_columns:
first_task = task_columns[0]
df_ = df_.sort_values(by=first_task, ascending=False)
else:
df_ = df_.sort_values(by='Model Name', ascending=True)
df_ = df_.reset_index(drop=True)
df_.insert(0, 'Rank', range(1, len(df_)+1))
fixed_column_order = [
"Rank",
"Model Name",
"Question Answering (QA)",
"Orthographic and Grammatical Analysis",
"Safety",
"Reasoning",
"Revision",
"License",
"Precision",
"Model Size"
]
selected_cols = [col for col in fixed_column_order if col in selected_cols and col in df_.columns]
return df_[selected_cols]
def filter_if_df(search_query, selected_cols, family_filters, min_size, max_size):
"""
Filters the instruction-following dataframe based on various criteria.
We have removed 'Filter by Type' and 'Filter by Creator'.
"""
df_ = load_if_data().copy()
if min_size > max_size:
min_size, max_size = max_size, min_size
# Search by model name
if search_query:
df_ = df_[df_['Model Name'].str.contains(search_query, case=False, na=False)]
# Filter by Family only (Creator and Type filters removed)
if family_filters:
df_ = df_[df_['Family'].isin(family_filters)]
# Filter by Model Size
df_ = df_[(df_['Model Size Filter'] >= min_size) & (df_['Model Size Filter'] <= max_size)]
# Re-rank
if 'Rank' in df_.columns:
df_ = df_.drop(columns=['Rank'])
df_ = df_.reset_index(drop=True)
df_.insert(0, 'Rank', range(1, len(df_)+1))
fixed_column_order = [
"Rank",
"Model Name",
"Creator",
"Family",
"Type",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Size (B)",
"Base Model",
"Context Window",
"Lang."
]
selected_cols = [col for col in fixed_column_order if col in selected_cols and col in df_.columns]
return df_[selected_cols]
def main():
df_3c3h, df_tasks, task_columns = load_results()
df_if = load_if_data() # Instruction Following DF
# Setup precision/license options for the 3C3H scoreboard
precision_options_3c3h = sorted(df_3c3h['Precision'].dropna().unique().tolist())
precision_options_3c3h = [p for p in precision_options_3c3h if p != 'UNK']
precision_options_3c3h.append('Missing')
license_options_3c3h = sorted(df_3c3h['License'].dropna().unique().tolist())
license_options_3c3h = [l for l in license_options_3c3h if l != 'UNK']
license_options_3c3h.append('Missing')
# Setup precision/license options for tasks scoreboard
precision_options_tasks = sorted(df_tasks['Precision'].dropna().unique().tolist())
precision_options_tasks = [p for p in precision_options_tasks if p != 'UNK']
precision_options_tasks.append('Missing')
license_options_tasks = sorted(df_tasks['License'].dropna().unique().tolist())
license_options_tasks = [l for l in license_options_tasks if l != 'UNK']
license_options_tasks.append('Missing')
# Model size range for 3C3H scoreboard
min_model_size_3c3h = int(df_3c3h['Model Size Filter'].min())
max_model_size_3c3h = int(df_3c3h['Model Size Filter'].max())
# Model size range for tasks scoreboard
min_model_size_tasks = int(df_tasks['Model Size Filter'].min())
max_model_size_tasks = int(df_tasks['Model Size Filter'].max())
# Column choices for 3C3H
column_choices_3c3h = [col for col in df_3c3h.columns.tolist() if col != 'Model Size Filter']
# Column choices for tasks
column_choices_tasks = [col for col in df_tasks.columns.tolist() if col != 'Model Size Filter']
# Now for instruction-following
family_options_if = sorted(df_if['Family'].dropna().unique().tolist())
min_model_size_if = int(df_if['Model Size Filter'].min())
max_model_size_if = int(df_if['Model Size Filter'].max())
#
# IMPORTANT: Reorder the columns for the Instruction-Following leaderboard
# Define the full order and the default visible columns separately.
#
all_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)",
"En Prompt-lvl",
"En Instruction-lvl",
"Type",
"Creator",
"Family",
"Size (B)",
"Base Model",
"Context Window",
"Lang."
]
default_if_columns = [
"Rank",
"Model Name",
"Average Accuracy (Ar)",
"Ar Prompt-lvl",
"Ar Instruction-lvl",
"Average Accuracy (En)"
]
with gr.Blocks() as demo:
gr.HTML(HEADER)
with gr.Tabs():
#
# AL Leaderboards Tab
#
with gr.Tab("AL Leaderboards π
"):
# -------------------------
# Sub-Tab: AraGen Leaderboards
# -------------------------
with gr.Tab("πͺ AraGen Leaderboards"):
with gr.Tabs():
# 3C3H Scores
with gr.Tab("3C3H Scores"):
with gr.Accordion("βοΈ Filters", open=False):
with gr.Row():
search_box_3c3h = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True
)
with gr.Row():
column_selector_3c3h = gr.CheckboxGroup(
choices=column_choices_3c3h,
value=[
'Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness'
],
label="Select columns to display"
)
with gr.Row():
license_filter_3c3h = gr.CheckboxGroup(
choices=license_options_3c3h,
value=license_options_3c3h.copy(),
label="Filter by License"
)
precision_filter_3c3h = gr.CheckboxGroup(
choices=precision_options_3c3h,
value=precision_options_3c3h.copy(),
label="Filter by Precision"
)
with gr.Row():
model_size_min_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=min_model_size_3c3h,
step=1,
label="Minimum Model Size",
interactive=True
)
model_size_max_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=max_model_size_3c3h,
step=1,
label="Maximum Model Size",
interactive=True
)
leaderboard_3c3h = gr.Dataframe(
df_3c3h[[
'Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness'
]],
interactive=False
)
filter_inputs_3c3h = [
search_box_3c3h, column_selector_3c3h,
precision_filter_3c3h, license_filter_3c3h,
model_size_min_filter_3c3h, model_size_max_filter_3c3h
]
search_box_3c3h.submit(filter_df_3c3h, inputs=filter_inputs_3c3h, outputs=leaderboard_3c3h)
for component in filter_inputs_3c3h:
component.change(filter_df_3c3h, inputs=filter_inputs_3c3h, outputs=leaderboard_3c3h)
# Tasks Scores
with gr.Tab("Tasks Scores"):
gr.Markdown("This Table is sorted based on the First Task (Question Answering)")
with gr.Accordion("βοΈ Filters", open=False):
with gr.Row():
search_box_tasks = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True
)
with gr.Row():
column_selector_tasks = gr.CheckboxGroup(
choices=column_choices_tasks,
value=['Rank', 'Model Name'] + task_columns,
label="Select columns to display"
)
with gr.Row():
license_filter_tasks = gr.CheckboxGroup(
choices=license_options_tasks,
value=license_options_tasks.copy(),
label="Filter by License"
)
precision_filter_tasks = gr.CheckboxGroup(
choices=precision_options_tasks,
value=precision_options_tasks.copy(),
label="Filter by Precision"
)
with gr.Row():
model_size_min_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=min_model_size_tasks,
step=1,
label="Minimum Model Size",
interactive=True
)
model_size_max_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=max_model_size_tasks,
step=1,
label="Maximum Model Size",
interactive=True
)
leaderboard_tasks = gr.Dataframe(
df_tasks[['Rank', 'Model Name'] + task_columns],
interactive=False
)
filter_inputs_tasks = [
search_box_tasks, column_selector_tasks,
precision_filter_tasks, license_filter_tasks,
model_size_min_filter_tasks, model_size_max_filter_tasks
]
search_box_tasks.submit(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(sq, cols, pf, lf, min_val, max_val, task_columns),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks
)
for component in filter_inputs_tasks:
component.change(
lambda sq, cols, pf, lf, min_val, max_val: filter_df_tasks(sq, cols, pf, lf, min_val, max_val, task_columns),
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks
)
# -------------------------
# Sub-Tab: Instruction Following Leaderboard
# -------------------------
with gr.Tab("π‘οΈ Instruction Following Leaderboard"):
with gr.Accordion("βοΈ Filters", open=False):
with gr.Row():
search_box_if = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True
)
with gr.Row():
column_selector_if = gr.CheckboxGroup(
choices=all_if_columns,
value=default_if_columns,
label="Select columns to display"
)
with gr.Row():
family_filter_if = gr.CheckboxGroup(
choices=family_options_if,
value=family_options_if.copy(),
label="Filter by Family"
)
with gr.Row():
model_size_min_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=min_model_size_if,
step=1,
label="Minimum Model Size",
interactive=True
)
model_size_max_filter_if = gr.Slider(
minimum=min_model_size_if,
maximum=max_model_size_if,
value=max_model_size_if,
step=1,
label="Maximum Model Size",
interactive=True
)
leaderboard_if = gr.Dataframe(
df_if[default_if_columns],
interactive=False
)
filter_inputs_if = [
search_box_if, column_selector_if,
family_filter_if,
model_size_min_filter_if, model_size_max_filter_if
]
search_box_if.submit(filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if)
for component in filter_inputs_if:
component.change(filter_if_df, inputs=filter_inputs_if, outputs=leaderboard_if)
#
# Submit Tab
#
with gr.Tab("Submit Here π"):
df_pending = load_requests('pending')
df_finished = load_requests('finished')
df_failed = load_requests('failed')
gr.Markdown(ABOUT_SECTION)
gr.Markdown("## Submit Your Model for Evaluation")
with gr.Column():
model_name_input = gr.Textbox(
label="Model Name",
placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)"
)
revision_input = gr.Textbox(label="Revision", placeholder="main", value="main")
precision_input = gr.Dropdown(
choices=["float16", "float32", "bfloat16", "8bit", "4bit"],
label="Precision",
value="float16"
)
params_input = gr.Textbox(
label="Params",
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
modality_input = gr.Radio(
choices=["Text"],
label="Modality",
value="Text"
)
submit_button = gr.Button("Submit Model")
submission_result = gr.Markdown()
submit_button.click(
submit_model,
inputs=[
model_name_input, revision_input, precision_input,
params_input, license_input, modality_input
],
outputs=submission_result
)
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
if not df_pending.empty:
gr.Dataframe(df_pending)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
# Citation Section
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True
)
gr.HTML(BOTTOM_LOGO)
demo.launch()
if __name__ == "__main__":
main()
|