Spaces:
Sleeping
Sleeping
File size: 28,715 Bytes
0243d7b c4380cc 8b18b8e c4c6527 8b18b8e 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b c4380cc 0243d7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import json
import numpy as np
import pandas as pd
import gradio as gr
HEADER = """
<center>
<h1>X-Risks Leaderboard: Frontier Models Evaluation for Extreme Risks (CCB)</h1>
</center>
<br></br>
"""
ABOUT_SECTION = """
## About
In recent headlines —from [OpenAI’s deal with the US National Laboratories](https://futurism.com/openai-signs-deal-us-government-nuclear-weapon-security) to [reports of a STEM student using AI guidance to build a nuclear fusor](https://www.corememory.com/p/a-young-man-used-ai-to-build-a-nuclear)— we’ve seen first-hand how advanced AI systems can impact high-stakes domains. These stories, while diverse in their context, share a common thread: they underscore the urgent need to better understand and responsibly manage the risks associated with frontier AI models.
Both cases illustrate a rapidly evolving landscape where AI isn’t just a tool for productivity—it can also play a role in critical, high-stakes environments like cybersecurity, chemistry, biology, nuclear and radiology domains.
At Inception, as part of the broader G42 family, we’re taking this responsibility very seriously. In this [space](https://huggingface.co/spaces/inceptionai/X-Risks-Leaderboard), we are debuting the X-Risks Leaderboard and, more broadly, the Safety Evaluation Suite. Our hope is that these tools will foster a transparent, evidence-based conversation about AI safety that can inform both researchers and policymakers alike.
### Motivation
As highlighted in the [International Scientific Report on the Safety of Advanced AI (2025)](https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf) and in [Model evaluation for extreme risks (Google, 2023)](https://arxiv.org/pdf/2305.15324), rigorous model evaluation is essential for identifying dangerous capabilities and ensuring that alignment issues do not lead to unintended harmful consequences. These findings reinforce our belief that continuous, comprehensive evaluation throughout the AI development lifecycle is not just beneficial, but necessary.
As researchers, we’re aware that such advancements offer both unprecedented opportunities and profound challenges. The pace at which AI capabilities are expanding means that traditional risk assessment methods may fall short. In this Leaderboard —X-Risks Leaderboard— we aim to rigorously measure how these models perform when confronted with expert-level questions/challenges that mimic real-world scenarios with potentially catastrophic outcomes.
### The X-Risks Leaderboard
The X-Risks Leaderboard presented in this space is designed to assess and highlight the extreme risks posed by frontier models/systems. And here’s how we’re approaching it:
- **Expert-Level Challenges:** We’ve started by focusing on domains such as cybersecurity, chemistry, and biology. In these areas, we’ve developed a set of expert-level questions (200 questions per domain) that serve as a proxy for the models’ ability to aid in scenarios that could escalate into real-world crises. Our plan is to extend this evaluation to nuclear and radiology challenges as our work progresses.
- **Transparent Scoring:** The Leaderboard reports scores based on how correctly and efficiently a model answers these domain-specific questions, based on [3C3H](https://huggingface.co/blog/leaderboard-3c3h-aragen) as a metric.
- **An Early Warning System:** A higher score in these extreme-risk evaluations might be a double-edged sword. It reflects a model’s ability to perform complex tasks, but it also flags a potential for these capabilities to be misapplied in ways that could have severe consequences. This public leaderboard aims to serve as an early warning framework for these kinds of risks.
### The Safety Evaluation Suite
This Leaderboard is a single pillar and first of our broader **Safety Evaluation Suite**, which we’re developing to address various dimensions of AI safety:
1. **X-Risks Leaderboard:** Focuses on evaluating extreme, existential, and catastrophic risks in high-stakes domains -CCBRN threats-.
2. **Persuasion Leaderboard:** This component will assess how AI systems might influence user beliefs and decisions, measuring their potential to persuade or manipulate. (To be introduced later this year)
3. **Red Teaming and Jailbreaking Leaderboard:** Evaluates the resilience of AI models against adversarial prompt hacking and other forms of red teaming, ensuring that models maintain their integrity in hostile environments. (To be introduced later this year)
4. **Social Safety Evaluations:** Concentrates on safeguarding against harmful outputs in areas such as self-harm, explicit content, discrimination, privacy breaches, and other ethical concerns. (To be introduced later this year)
Together, these components will help us and the broader research community to better understand, anticipate, and mitigate the risks inherent in rapidly advancing AI technologies.
### Contact
We are not here to sensationalize these issues but to study them with the scientific rigor they deserve. At Inception, our team of researchers is committed to transparency and collaboration, and by publicly sharing our methodologies and findings through the X-Risks Leaderboard (with more components to come), we hope to contribute to a broader, evidence-based dialogue on AI safety.
For any inquiries or assistance, feel free to reach out through the community tab at [Inception X-Risks Community](https://huggingface.co/spaces/inceptionai/X-Risks-Leaderboard/discussions) or via [email](mailto:[email protected]).
"""
CITATION_BUTTON_LABEL = """
Copy the following snippet to cite these results
"""
CITATION_BUTTON_TEXT = """
@misc{
author = {El Filali, Ali and Jackson, Andrew and Ben Amor, Boulbaba and Herlihy, Adele O and Murray, Larry and Manucha, Rohit and Kosior, Grzegorz and Wilton, James},
title = {X-Risks Leaderboard : Frontier Models Evaluation for Extreme Risks (CCB)},
year = {2025},
publisher = {Inception},
howpublished = "url{https://huggingface.co/spaces/inceptionai/X-Risks-Leaderboard}"
}
"""
def load_results():
# Get the current directory of the script and construct the path to results.json
current_dir = os.path.dirname(os.path.abspath(__file__))
results_file = os.path.join(current_dir, "assets", "results", "results.json")
# Load the JSON data from the specified file
with open(results_file, 'r') as f:
data = json.load(f)
# Filter out any entries that only contain '_last_sync_timestamp'
filtered_data = []
for entry in data:
# If '_last_sync_timestamp' is the only key, skip it
if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
continue
filtered_data.append(entry)
data = filtered_data
# Lists to collect data
data_3c3h = []
data_tasks = []
for model_data in data:
# Extract model meta data
meta = model_data.get('Meta', {})
model_name = meta.get('Model Name', 'UNK')
revision = meta.get('Revision', 'UNK')
precision = meta.get('Precision', 'UNK')
params = meta.get('Params', 'UNK')
license = meta.get('License', 'UNK')
# Convert "Model Size" to numeric, treating "UNK" as infinity
try:
model_size_numeric = float(params)
except (ValueError, TypeError):
model_size_numeric = np.inf
# 3C3H Scores
scores_data = model_data.get('claude-3.5-sonnet Scores', {})
scores_3c3h = scores_data.get('3C3H Scores', {})
scores_tasks = scores_data.get('Tasks Scores', {})
# Multiply scores by 100 to get percentages (keep them as numeric values)
formatted_scores_3c3h = {k: v * 100 for k, v in scores_3c3h.items()}
formatted_scores_tasks = {k: v * 100 for k, v in scores_tasks.items()}
# For 3C3H Scores DataFrame
data_entry_3c3h = {
'Model Name': model_name,
'Revision': revision,
'License': license,
'Precision': precision,
'Model Size': model_size_numeric, # Numeric value for sorting
'3C3H Score': formatted_scores_3c3h.get("3C3H Score", np.nan),
'Correctness': formatted_scores_3c3h.get("Correctness", np.nan),
'Completeness': formatted_scores_3c3h.get("Completeness", np.nan),
'Conciseness': formatted_scores_3c3h.get("Conciseness", np.nan),
'Helpfulness': formatted_scores_3c3h.get("Helpfulness", np.nan),
'Honesty': formatted_scores_3c3h.get("Honesty", np.nan),
'Harmlessness': formatted_scores_3c3h.get("Harmlessness", np.nan),
}
data_3c3h.append(data_entry_3c3h)
# For Tasks Scores DataFrame
data_entry_tasks = {
'Model Name': model_name,
'Revision': revision,
'License': license,
'Precision': precision,
'Model Size': model_size_numeric, # Numeric value for sorting
**formatted_scores_tasks
}
data_tasks.append(data_entry_tasks)
df_3c3h = pd.DataFrame(data_3c3h)
df_tasks = pd.DataFrame(data_tasks)
# Round the numeric score columns to 4 decimal places
score_columns_3c3h = ['3C3H Score', 'Correctness', 'Completeness', 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']
df_3c3h[score_columns_3c3h] = df_3c3h[score_columns_3c3h].round(4)
# Replace np.inf with a large number in 'Model Size Filter' for filtering
max_model_size_value = 1000 # Define a maximum value
df_3c3h['Model Size Filter'] = df_3c3h['Model Size'].replace(np.inf, max_model_size_value)
# Sort df_3c3h by '3C3H Score' descending if column exists
if '3C3H Score' in df_3c3h.columns:
df_3c3h = df_3c3h.sort_values(by='3C3H Score', ascending=False)
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1)) # Add Rank column starting from 1
else:
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
# Extract task columns
task_columns = [col for col in df_tasks.columns if col not in ['Model Name', 'Revision', 'License', 'Precision', 'Model Size', 'Model Size Filter']]
# Round the task score columns to 4 decimal places
if task_columns:
df_tasks[task_columns] = df_tasks[task_columns].round(4)
# Replace np.inf with a large number in 'Model Size Filter' for filtering
df_tasks['Model Size Filter'] = df_tasks['Model Size'].replace(np.inf, max_model_size_value)
# Sort df_tasks by the first task column if it exists
if task_columns:
first_task = task_columns[0]
df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1)) # Add Rank column starting from 1
else:
df_tasks = df_tasks.sort_values(by='Model Name', ascending=True)
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
return df_3c3h, df_tasks, task_columns
def main():
df_3c3h, df_tasks, task_columns = load_results()
# Extract unique Precision and License values for filters
precision_options_3c3h = sorted(df_3c3h['Precision'].dropna().unique().tolist())
precision_options_3c3h = [p for p in precision_options_3c3h if p != 'UNK']
precision_options_3c3h.append('Missing')
license_options_3c3h = sorted(df_3c3h['License'].dropna().unique().tolist())
license_options_3c3h = [l for l in license_options_3c3h if l != 'UNK']
license_options_3c3h.append('Missing')
precision_options_tasks = sorted(df_tasks['Precision'].dropna().unique().tolist())
precision_options_tasks = [p for p in precision_options_tasks if p != 'UNK']
precision_options_tasks.append('Missing')
license_options_tasks = sorted(df_tasks['License'].dropna().unique().tolist())
license_options_tasks = [l for l in license_options_tasks if l != 'UNK']
license_options_tasks.append('Missing')
# Get min and max model sizes for sliders, handling 'inf' values
min_model_size_3c3h = int(df_3c3h['Model Size Filter'].min())
max_model_size_3c3h = int(df_3c3h['Model Size Filter'].max())
min_model_size_tasks = int(df_tasks['Model Size Filter'].min())
max_model_size_tasks = int(df_tasks['Model Size Filter'].max())
# Exclude 'Model Size Filter' from column selectors
column_choices_3c3h = [col for col in df_3c3h.columns if col != 'Model Size Filter']
column_choices_tasks = [col for col in df_tasks.columns if col != 'Model Size Filter']
with gr.Blocks() as demo:
gr.HTML(HEADER)
with gr.Tabs():
with gr.Tab("Leaderboard"):
with gr.Tabs():
with gr.Tab("Tasks Scores"):
gr.Markdown("""
**Notes:**
- This table is sorted according to the first task based on its accuracy score.
- A higher rank indicates a greater susceptibility for the model to be considered dangerous.
""")
with gr.Row():
search_box_tasks = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True
)
with gr.Row():
column_selector_tasks = gr.CheckboxGroup(
choices=column_choices_tasks,
value=['Rank', 'Model Name'] + task_columns,
label="Select columns to display",
)
with gr.Row():
license_filter_tasks = gr.CheckboxGroup(
choices=license_options_tasks,
value=license_options_tasks.copy(), # Default all selected
label="Filter by License",
)
precision_filter_tasks = gr.CheckboxGroup(
choices=precision_options_tasks,
value=precision_options_tasks.copy(), # Default all selected
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=min_model_size_tasks,
step=1,
label="Minimum Model Size",
interactive=True
)
model_size_max_filter_tasks = gr.Slider(
minimum=min_model_size_tasks,
maximum=max_model_size_tasks,
value=max_model_size_tasks,
step=1,
label="Maximum Model Size",
interactive=True
)
leaderboard_tasks = gr.Dataframe(
df_tasks[['Rank', 'Model Name'] + task_columns],
interactive=False
)
def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
filtered_df = df_tasks.copy()
# Ensure min_size <= max_size
if min_size > max_size:
min_size, max_size = max_size, min_size
# Apply search filter
if search_query:
filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
# Apply Precision filter
if precision_filters:
include_missing = 'Missing' in precision_filters
selected_precisions = [p for p in precision_filters if p != 'Missing']
if include_missing:
filtered_df = filtered_df[
(filtered_df['Precision'].isin(selected_precisions)) |
(filtered_df['Precision'] == 'UNK') |
(filtered_df['Precision'].isna())
]
else:
filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
# Apply License filter
if license_filters:
include_missing = 'Missing' in license_filters
selected_licenses = [l for l in license_filters if l != 'Missing']
if include_missing:
filtered_df = filtered_df[
(filtered_df['License'].isin(selected_licenses)) |
(filtered_df['License'] == 'UNK') |
(filtered_df['License'].isna())
]
else:
filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
# Apply Model Size filter
filtered_df = filtered_df[
(filtered_df['Model Size Filter'] >= min_size) &
(filtered_df['Model Size Filter'] <= max_size)
]
# Remove existing 'Rank' column if present
if 'Rank' in filtered_df.columns:
filtered_df = filtered_df.drop(columns=['Rank'])
# Sort by the first task column if it exists
if task_columns:
first_task = task_columns[0]
filtered_df = filtered_df.sort_values(by=first_task, ascending=False)
else:
filtered_df = filtered_df.sort_values(by='Model Name', ascending=True)
# Recalculate Rank after filtering
filtered_df = filtered_df.reset_index(drop=True)
filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
# Ensure selected columns are present
selected_cols = [col for col in selected_cols if col in filtered_df.columns]
return filtered_df[selected_cols]
# Bind the filter function to the appropriate events
filter_inputs_tasks = [
search_box_tasks,
column_selector_tasks,
precision_filter_tasks,
license_filter_tasks,
model_size_min_filter_tasks,
model_size_max_filter_tasks
]
search_box_tasks.submit(
filter_df_tasks,
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks
)
# Bind change events for CheckboxGroups and sliders
for component in filter_inputs_tasks:
component.change(
filter_df_tasks,
inputs=filter_inputs_tasks,
outputs=leaderboard_tasks
)
with gr.Tab("3C3H Scores"):
with gr.Row():
search_box_3c3h = gr.Textbox(
placeholder="Search for models...",
label="Search",
interactive=True
)
with gr.Row():
column_selector_3c3h = gr.CheckboxGroup(
choices=column_choices_3c3h,
value=[
'Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness'
],
label="Select columns to display",
)
with gr.Row():
license_filter_3c3h = gr.CheckboxGroup(
choices=license_options_3c3h,
value=license_options_3c3h.copy(), # Default all selected
label="Filter by License",
)
precision_filter_3c3h = gr.CheckboxGroup(
choices=precision_options_3c3h,
value=precision_options_3c3h.copy(), # Default all selected
label="Filter by Precision",
)
with gr.Row():
model_size_min_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=min_model_size_3c3h,
step=1,
label="Minimum Model Size",
interactive=True
)
model_size_max_filter_3c3h = gr.Slider(
minimum=min_model_size_3c3h,
maximum=max_model_size_3c3h,
value=max_model_size_3c3h,
step=1,
label="Maximum Model Size",
interactive=True
)
leaderboard_3c3h = gr.Dataframe(
df_3c3h[['Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']],
interactive=False
)
def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
filtered_df = df_3c3h.copy()
# Ensure min_size <= max_size
if min_size > max_size:
min_size, max_size = max_size, min_size
# Apply search filter
if search_query:
filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
# Apply Precision filter
if precision_filters:
include_missing = 'Missing' in precision_filters
selected_precisions = [p for p in precision_filters if p != 'Missing']
if include_missing:
filtered_df = filtered_df[
(filtered_df['Precision'].isin(selected_precisions)) |
(filtered_df['Precision'] == 'UNK') |
(filtered_df['Precision'].isna())
]
else:
filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
# Apply License filter
if license_filters:
include_missing = 'Missing' in license_filters
selected_licenses = [l for l in license_filters if l != 'Missing']
if include_missing:
filtered_df = filtered_df[
(filtered_df['License'].isin(selected_licenses)) |
(filtered_df['License'] == 'UNK') |
(filtered_df['License'].isna())
]
else:
filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
# Apply Model Size filter
filtered_df = filtered_df[
(filtered_df['Model Size Filter'] >= min_size) &
(filtered_df['Model Size Filter'] <= max_size)
]
# Remove existing 'Rank' column if present
if 'Rank' in filtered_df.columns:
filtered_df = filtered_df.drop(columns=['Rank'])
# Recalculate Rank after filtering
filtered_df = filtered_df.reset_index(drop=True)
filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
# Ensure selected columns are present
selected_cols = [col for col in selected_cols if col in filtered_df.columns]
return filtered_df[selected_cols]
# Bind the filter function to the appropriate events
filter_inputs_3c3h = [
search_box_3c3h,
column_selector_3c3h,
precision_filter_3c3h,
license_filter_3c3h,
model_size_min_filter_3c3h,
model_size_max_filter_3c3h
]
search_box_3c3h.submit(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h
)
# Bind change events for CheckboxGroups and sliders
for component in filter_inputs_3c3h:
component.change(
filter_df_3c3h,
inputs=filter_inputs_3c3h,
outputs=leaderboard_3c3h
)
with gr.Tab("About"):
gr.Markdown(ABOUT_SECTION)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=9,
elem_id="citation-button",
show_copy_button=True,
)
demo.launch()
if __name__ == "__main__":
main() |