File size: 10,796 Bytes
cd32184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import uuid
from typing import TYPE_CHECKING, Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union

from ..data import get_template_and_fix_tokenizer
from ..extras.logging import get_logger
from ..extras.misc import get_device_count
from ..extras.packages import is_vllm_available, is_vllm_version_greater_than_0_5, is_vllm_version_greater_than_0_5_1
from ..model import load_config, load_tokenizer
from ..model.model_utils.quantization import QuantizationMethod
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
from .base_engine import BaseEngine, Response


if is_vllm_available():
    from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
    from vllm.lora.request import LoRARequest

    if is_vllm_version_greater_than_0_5_1():
        pass
    elif is_vllm_version_greater_than_0_5():
        from vllm.multimodal.image import ImagePixelData
    else:
        from vllm.sequence import MultiModalData


if TYPE_CHECKING:
    from numpy.typing import NDArray
    from transformers.image_processing_utils import BaseImageProcessor

    from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments


logger = get_logger(__name__)


class VllmEngine(BaseEngine):
    def __init__(
        self,
        model_args: "ModelArguments",
        data_args: "DataArguments",
        finetuning_args: "FinetuningArguments",
        generating_args: "GeneratingArguments",
    ) -> None:
        config = load_config(model_args)  # may download model from ms hub
        if getattr(config, "quantization_config", None):  # gptq models should use float16
            quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
            quant_method = quantization_config.get("quant_method", "")
            if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto":
                model_args.infer_dtype = "float16"

        self.can_generate = finetuning_args.stage == "sft"
        tokenizer_module = load_tokenizer(model_args)
        self.tokenizer = tokenizer_module["tokenizer"]
        self.processor = tokenizer_module["processor"]
        self.tokenizer.padding_side = "left"
        self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template, data_args.tool_format)
        self.generating_args = generating_args.to_dict()

        engine_args = {
            "model": model_args.model_name_or_path,
            "trust_remote_code": True,
            "download_dir": model_args.cache_dir,
            "dtype": model_args.infer_dtype,
            "max_model_len": model_args.vllm_maxlen,
            "tensor_parallel_size": get_device_count() or 1,
            "gpu_memory_utilization": model_args.vllm_gpu_util,
            "disable_log_stats": True,
            "disable_log_requests": True,
            "enforce_eager": model_args.vllm_enforce_eager,
            "enable_lora": model_args.adapter_name_or_path is not None,
            "max_lora_rank": model_args.vllm_max_lora_rank,
        }

        if model_args.visual_inputs:
            image_size = config.vision_config.image_size
            patch_size = config.vision_config.patch_size
            self.image_feature_size = (image_size // patch_size) ** 2
            engine_args["image_input_type"] = "pixel_values"
            engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token)
            engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
            engine_args["image_feature_size"] = self.image_feature_size
            if getattr(config, "is_yi_vl_derived_model", None):
                import vllm.model_executor.models.llava

                logger.info("Detected Yi-VL model, applying projector patch.")
                vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM

        self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
        if model_args.adapter_name_or_path is not None:
            self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
        else:
            self.lora_request = None

    async def _generate(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> AsyncIterator["RequestOutput"]:
        request_id = "chatcmpl-{}".format(uuid.uuid4().hex)

        if (
            self.processor is not None
            and image is not None
            and not hasattr(self.processor, "image_seq_length")
            and self.template.image_token not in messages[0]["content"]
        ):  # llava-like models (TODO: paligemma models)
            messages[0]["content"] = self.template.image_token * self.image_feature_size + messages[0]["content"]

        paired_messages = messages + [{"role": "assistant", "content": ""}]
        system = system or self.generating_args["default_system"]
        prompt_ids, _ = self.template.encode_oneturn(
            tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
        )

        if self.processor is not None and image is not None:  # add image features
            image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
            pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
            if is_vllm_version_greater_than_0_5_1():
                multi_modal_data = {"image": pixel_values}
            elif is_vllm_version_greater_than_0_5():
                multi_modal_data = ImagePixelData(image=pixel_values)
            else:  # TODO: remove vllm 0.4.3 support
                multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
        else:
            multi_modal_data = None

        prompt_length = len(prompt_ids)

        use_beam_search: bool = self.generating_args["num_beams"] > 1
        temperature: Optional[float] = input_kwargs.pop("temperature", None)
        top_p: Optional[float] = input_kwargs.pop("top_p", None)
        top_k: Optional[float] = input_kwargs.pop("top_k", None)
        num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
        repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
        length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
        max_length: Optional[int] = input_kwargs.pop("max_length", None)
        max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
        stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)

        if "max_new_tokens" in self.generating_args:
            max_tokens = self.generating_args["max_new_tokens"]
        elif "max_length" in self.generating_args:
            if self.generating_args["max_length"] > prompt_length:
                max_tokens = self.generating_args["max_length"] - prompt_length
            else:
                max_tokens = 1

        if max_length:
            max_tokens = max_length - prompt_length if max_length > prompt_length else 1

        if max_new_tokens:
            max_tokens = max_new_tokens

        sampling_params = SamplingParams(
            n=num_return_sequences,
            repetition_penalty=(
                repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
            )
            or 1.0,  # repetition_penalty must > 0
            temperature=temperature if temperature is not None else self.generating_args["temperature"],
            top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0,  # top_p must > 0
            top_k=top_k if top_k is not None else self.generating_args["top_k"],
            use_beam_search=use_beam_search,
            length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
            stop=stop,
            stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
            max_tokens=max_tokens,
            skip_special_tokens=True,
        )

        result_generator = self.model.generate(
            inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
            sampling_params=sampling_params,
            request_id=request_id,
            lora_request=self.lora_request,
        )
        return result_generator

    async def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> List["Response"]:
        final_output = None
        generator = await self._generate(messages, system, tools, image, **input_kwargs)
        async for request_output in generator:
            final_output = request_output

        results = []
        for output in final_output.outputs:
            results.append(
                Response(
                    response_text=output.text,
                    response_length=len(output.token_ids),
                    prompt_length=len(final_output.prompt_token_ids),
                    finish_reason=output.finish_reason,
                )
            )

        return results

    async def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> AsyncGenerator[str, None]:
        generated_text = ""
        generator = await self._generate(messages, system, tools, image, **input_kwargs)
        async for result in generator:
            delta_text = result.outputs[0].text[len(generated_text) :]
            generated_text = result.outputs[0].text
            yield delta_text

    async def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        raise NotImplementedError("vLLM engine does not support get_scores.")