Spaces:
Build error
Build error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.logging import get_logger | |
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer, ProcessorMixin | |
from ...hparams import DataArguments | |
from ..template import Template | |
logger = get_logger(__name__) | |
def _encode_feedback_example( | |
prompt: Sequence[Dict[str, str]], | |
response: Sequence[Dict[str, str]], | |
kl_response: Sequence[Dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Tuple[List[int], List[int], List[int], List[int], bool]: | |
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
if response[0]["content"]: # desired example | |
kto_tag = True | |
messages = prompt + [response[0]] | |
else: # undesired example | |
kto_tag = False | |
messages = prompt + [response[1]] | |
if kl_response[0]["content"]: | |
kl_messages = prompt + [kl_response[0]] | |
else: | |
kl_messages = prompt + [kl_response[1]] | |
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools) | |
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools) | |
if template.efficient_eos: | |
response_ids += [tokenizer.eos_token_id] | |
kl_response_ids += [tokenizer.eos_token_id] | |
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids | |
kl_prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + kl_prompt_ids | |
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), data_args.cutoff_len) | |
prompt_ids = prompt_ids[:source_len] | |
response_ids = response_ids[:target_len] | |
kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), data_args.cutoff_len) | |
kl_prompt_ids = kl_prompt_ids[:kl_source_len] | |
kl_response_ids = kl_response_ids[:kl_target_len] | |
input_ids = prompt_ids + response_ids | |
labels = [IGNORE_INDEX] * source_len + response_ids | |
kl_input_ids = kl_prompt_ids + kl_response_ids | |
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids | |
return input_ids, labels, kl_input_ids, kl_labels, kto_tag | |
def preprocess_feedback_dataset( | |
examples: Dict[str, List[Any]], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs | |
kl_response = examples["response"][::-1] | |
model_inputs = { | |
"input_ids": [], | |
"attention_mask": [], | |
"labels": [], | |
"kl_input_ids": [], | |
"kl_attention_mask": [], | |
"kl_labels": [], | |
"kto_tags": [], | |
} | |
if processor is not None: | |
model_inputs["pixel_values"] = [] | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"] = [] | |
model_inputs["kl_token_type_ids"] = [] | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: | |
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
continue | |
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example( | |
prompt=examples["prompt"][i], | |
response=examples["response"][i], | |
kl_response=kl_response[i], | |
system=examples["system"][i], | |
tools=examples["tools"][i], | |
template=template, | |
tokenizer=tokenizer, | |
processor=processor, | |
data_args=data_args, | |
) | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
model_inputs["kl_input_ids"].append(kl_input_ids) | |
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) | |
model_inputs["kl_labels"].append(kl_labels) | |
model_inputs["kto_tags"].append(kto_tag) | |
if processor is not None: | |
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) | |
model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor)) | |
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) | |
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num | |
if desirable_num == 0 or undesirable_num == 0: | |
logger.warning("Your dataset only has one preference type.") | |
return model_inputs | |