Spaces:
Build error
Build error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.logging import get_logger | |
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer, ProcessorMixin | |
from ...hparams import DataArguments | |
from ..template import Template | |
logger = get_logger(__name__) | |
def _encode_pairwise_example( | |
prompt: Sequence[Dict[str, str]], | |
response: Sequence[Dict[str, str]], | |
system: Optional[str], | |
tools: Optional[str], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Tuple[List[int], List[int], List[int], List[int]]: | |
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models | |
prompt[0]["content"] = template.image_token + prompt[0]["content"] | |
chosen_messages = prompt + [response[0]] | |
rejected_messages = prompt + [response[1]] | |
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools) | |
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools) | |
if template.efficient_eos: | |
chosen_ids += [tokenizer.eos_token_id] | |
rejected_ids += [tokenizer.eos_token_id] | |
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models | |
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids | |
source_len, target_len = infer_seqlen( | |
len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), data_args.cutoff_len | |
) # consider the response is more important | |
prompt_ids = prompt_ids[:source_len] | |
chosen_ids = chosen_ids[:target_len] | |
rejected_ids = rejected_ids[:target_len] | |
chosen_input_ids = prompt_ids + chosen_ids | |
chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids | |
rejected_input_ids = prompt_ids + rejected_ids | |
rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids | |
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels | |
def preprocess_pairwise_dataset( | |
examples: Dict[str, List[Any]], | |
template: "Template", | |
tokenizer: "PreTrainedTokenizer", | |
processor: Optional["ProcessorMixin"], | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>` | |
model_inputs = { | |
"chosen_input_ids": [], | |
"chosen_attention_mask": [], | |
"chosen_labels": [], | |
"rejected_input_ids": [], | |
"rejected_attention_mask": [], | |
"rejected_labels": [], | |
} | |
if processor is not None: | |
model_inputs["pixel_values"] = [] | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["chosen_token_type_ids"] = [] | |
model_inputs["rejected_token_type_ids"] = [] | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: | |
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) | |
continue | |
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example( | |
prompt=examples["prompt"][i], | |
response=examples["response"][i], | |
system=examples["system"][i], | |
tools=examples["tools"][i], | |
template=template, | |
tokenizer=tokenizer, | |
processor=processor, | |
data_args=data_args, | |
) | |
model_inputs["chosen_input_ids"].append(chosen_input_ids) | |
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids)) | |
model_inputs["chosen_labels"].append(chosen_labels) | |
model_inputs["rejected_input_ids"].append(rejected_input_ids) | |
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids)) | |
model_inputs["rejected_labels"].append(rejected_labels) | |
if processor is not None: | |
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) | |
if hasattr(processor, "image_seq_length"): # paligemma models | |
model_inputs["chosen_token_type_ids"].append( | |
get_paligemma_token_type_ids(len(chosen_input_ids), processor) | |
) | |
model_inputs["rejected_token_type_ids"].append( | |
get_paligemma_token_type_ids(len(rejected_input_ids), processor) | |
) | |
return model_inputs | |
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"])) | |
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"])) | |
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"])) | |
print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))) | |
print("chosen_label_ids:\n{}".format(example["chosen_labels"])) | |
print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False))) | |
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"])) | |
print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False))) | |
print("rejected_label_ids:\n{}".format(example["rejected_labels"])) | |
print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False))) | |