Spaces:
Build error
Build error
Delete competition/llama.py
Browse files- competition/llama.py +0 -139
competition/llama.py
DELETED
|
@@ -1,139 +0,0 @@
|
|
| 1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 2 |
-
from datasets import Dataset
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from sklearn.model_selection import train_test_split
|
| 5 |
-
from peft import get_peft_model, LoraConfig, TaskType
|
| 6 |
-
import evaluate
|
| 7 |
-
import numpy as np
|
| 8 |
-
from tqdm import tqdm
|
| 9 |
-
|
| 10 |
-
# Load the dataset
|
| 11 |
-
file_path = 'train_en.csv'
|
| 12 |
-
dataset = pd.read_csv(file_path)
|
| 13 |
-
|
| 14 |
-
# Map labels to expected responses
|
| 15 |
-
label_mapping = {
|
| 16 |
-
"Yes": 0,
|
| 17 |
-
"No": 1,
|
| 18 |
-
"It doesn't matter": 2,
|
| 19 |
-
"Unimportant": 2,
|
| 20 |
-
"Incorrect questioning": 3,
|
| 21 |
-
"Correct answers": 4
|
| 22 |
-
}
|
| 23 |
-
|
| 24 |
-
# Apply label mapping
|
| 25 |
-
dataset['label'] = dataset['label'].map(label_mapping)
|
| 26 |
-
|
| 27 |
-
# Handle NaN values: Drop rows where label is NaN
|
| 28 |
-
dataset = dataset.dropna(subset=['label'])
|
| 29 |
-
|
| 30 |
-
# Ensure labels are integers
|
| 31 |
-
dataset['label'] = dataset['label'].astype(int)
|
| 32 |
-
|
| 33 |
-
# Combine "text" and "puzzle" columns
|
| 34 |
-
dataset['combined_text'] = dataset['text'] + " " + dataset['puzzle']
|
| 35 |
-
|
| 36 |
-
# Split the dataset into training and validation sets
|
| 37 |
-
train_df, val_df = train_test_split(dataset, test_size=0.2, random_state=42)
|
| 38 |
-
|
| 39 |
-
# Convert the dataframes to datasets
|
| 40 |
-
train_dataset = Dataset.from_pandas(train_df)
|
| 41 |
-
val_dataset = Dataset.from_pandas(val_df)
|
| 42 |
-
|
| 43 |
-
# Load the tokenizer and model
|
| 44 |
-
model_name = "meta-llama/Meta-Llama-3-8B" # Replace with the actual model name
|
| 45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 46 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=5)
|
| 47 |
-
|
| 48 |
-
# Add a padding token if it's not already present
|
| 49 |
-
if tokenizer.pad_token is None:
|
| 50 |
-
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
| 51 |
-
model.resize_token_embeddings(len(tokenizer))
|
| 52 |
-
tokenizer.pad_token = tokenizer.eos_token # Set the padding token explicitly
|
| 53 |
-
|
| 54 |
-
# Ensure the padding token is set correctly in the model configuration
|
| 55 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
| 56 |
-
|
| 57 |
-
# Tokenize the data
|
| 58 |
-
def tokenize_function(examples):
|
| 59 |
-
return tokenizer(examples['combined_text'], truncation=True, padding='max_length', max_length=128)
|
| 60 |
-
|
| 61 |
-
train_dataset = train_dataset.map(tokenize_function, batched=True, num_proc=4) # Use multiprocessing
|
| 62 |
-
val_dataset = val_dataset.map(tokenize_function, batched=True, num_proc=4)
|
| 63 |
-
|
| 64 |
-
# Set the format for PyTorch
|
| 65 |
-
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
| 66 |
-
val_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
| 67 |
-
|
| 68 |
-
# Define LoRA configuration
|
| 69 |
-
lora_config = LoraConfig(
|
| 70 |
-
task_type=TaskType.SEQ_CLS,
|
| 71 |
-
r=16,
|
| 72 |
-
lora_alpha=16,
|
| 73 |
-
target_modules=["q_proj", "v_proj"],
|
| 74 |
-
lora_dropout=0.05,
|
| 75 |
-
bias="none"
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
# Apply LoRA to the model
|
| 79 |
-
model = get_peft_model(model, lora_config)
|
| 80 |
-
model.print_trainable_parameters()
|
| 81 |
-
|
| 82 |
-
# Training arguments
|
| 83 |
-
training_args = TrainingArguments(
|
| 84 |
-
output_dir='./results',
|
| 85 |
-
learning_rate=1e-4,
|
| 86 |
-
lr_scheduler_type="linear",
|
| 87 |
-
warmup_ratio=0.1,
|
| 88 |
-
max_grad_norm=0.3,
|
| 89 |
-
per_device_train_batch_size=8, # Increase batch size if memory allows
|
| 90 |
-
per_device_eval_batch_size=8,
|
| 91 |
-
num_train_epochs=3,
|
| 92 |
-
weight_decay=0.001,
|
| 93 |
-
evaluation_strategy="epoch",
|
| 94 |
-
save_strategy="epoch",
|
| 95 |
-
load_best_model_at_end=True,
|
| 96 |
-
report_to="wandb",
|
| 97 |
-
fp16=True,
|
| 98 |
-
gradient_checkpointing=True,
|
| 99 |
-
gradient_accumulation_steps=2, # Adjust based on memory constraints
|
| 100 |
-
dataloader_num_workers=4,
|
| 101 |
-
logging_steps=100,
|
| 102 |
-
save_total_limit=2,
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
def compute_metrics(eval_pred):
|
| 106 |
-
precision_metric = evaluate.load("precision")
|
| 107 |
-
recall_metric = evaluate.load("recall")
|
| 108 |
-
f1_metric = evaluate.load("f1")
|
| 109 |
-
accuracy_metric = evaluate.load("accuracy")
|
| 110 |
-
|
| 111 |
-
logits, labels = eval_pred
|
| 112 |
-
predictions = np.argmax(logits, axis=-1)
|
| 113 |
-
|
| 114 |
-
precision = precision_metric.compute(predictions=predictions, references=labels, average="weighted")["precision"]
|
| 115 |
-
recall = recall_metric.compute(predictions=predictions, references=labels, average="weighted")["recall"]
|
| 116 |
-
f1 = f1_metric.compute(predictions=predictions, references=labels, average="weighted")["f1"]
|
| 117 |
-
accuracy = accuracy_metric.compute(predictions=predictions, references=labels)["accuracy"]
|
| 118 |
-
|
| 119 |
-
return {"precision": precision, "recall": recall, "f1-score": f1, 'accuracy': accuracy}
|
| 120 |
-
|
| 121 |
-
# Initialize the Trainer
|
| 122 |
-
trainer = Trainer(
|
| 123 |
-
model=model,
|
| 124 |
-
args=training_args,
|
| 125 |
-
train_dataset=train_dataset,
|
| 126 |
-
eval_dataset=val_dataset,
|
| 127 |
-
compute_metrics=compute_metrics
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
# Train the model with progress bar
|
| 131 |
-
trainer.train()
|
| 132 |
-
|
| 133 |
-
# Save the model
|
| 134 |
-
model.save_pretrained('trained_llama_model')
|
| 135 |
-
tokenizer.save_pretrained('trained_llama_model')
|
| 136 |
-
|
| 137 |
-
# Evaluate the model with progress bar
|
| 138 |
-
eval_results = trainer.evaluate()
|
| 139 |
-
print(eval_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|