Spaces:
Build error
Build error
few shot COMET results
Browse files
llm_toolkit/translation_utils.py
CHANGED
@@ -249,12 +249,7 @@ def count_chinese_characters(text):
|
|
249 |
return len(chinese_chars)
|
250 |
|
251 |
|
252 |
-
def
|
253 |
-
chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]")
|
254 |
-
return 1 if chinese_char_pattern.search(text) else 0
|
255 |
-
|
256 |
-
|
257 |
-
def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
258 |
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
259 |
metrics_df.rename(columns={0: "model"}, inplace=True)
|
260 |
metrics_df[variant] = metrics_df["model"].apply(
|
@@ -272,6 +267,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
272 |
|
273 |
tokenizers = {model: load_tokenizer(model) for model in models}
|
274 |
|
|
|
275 |
meteor = []
|
276 |
spbleu = []
|
277 |
bleu_1 = []
|
@@ -295,11 +291,22 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
295 |
df[new_col] = df["chinese"].apply(count_chinese_characters)
|
296 |
|
297 |
for col in columns:
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
print(f"{col}: {metrics}")
|
302 |
|
|
|
303 |
meteor.append(metrics["meteor"])
|
304 |
spbleu.append(metrics["sacrebleu"]["score"])
|
305 |
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
@@ -332,6 +339,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
332 |
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
333 |
)
|
334 |
|
|
|
335 |
metrics_df["meteor"] = meteor
|
336 |
metrics_df["spbleu"] = spbleu
|
337 |
metrics_df["bleu_1"] = bleu_1
|
@@ -340,7 +348,7 @@ def get_metrics(df, max_output_tokens=2048, variant="rpp"):
|
|
340 |
metrics_df["repetition_score"] = repetition_score
|
341 |
metrics_df["total_repetitions"] = total_repetitions
|
342 |
metrics_df["rap"] = metrics_df.apply(
|
343 |
-
lambda x: x["
|
344 |
)
|
345 |
|
346 |
metrics_df["translation_completeness"] = translation_completeness
|
|
|
249 |
return len(chinese_chars)
|
250 |
|
251 |
|
252 |
+
def get_metrics(df, max_output_tokens=2048, variant="rpp", existing_metrics_df=None):
|
|
|
|
|
|
|
|
|
|
|
253 |
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
254 |
metrics_df.rename(columns={0: "model"}, inplace=True)
|
255 |
metrics_df[variant] = metrics_df["model"].apply(
|
|
|
267 |
|
268 |
tokenizers = {model: load_tokenizer(model) for model in models}
|
269 |
|
270 |
+
comet = []
|
271 |
meteor = []
|
272 |
spbleu = []
|
273 |
bleu_1 = []
|
|
|
291 |
df[new_col] = df["chinese"].apply(count_chinese_characters)
|
292 |
|
293 |
for col in columns:
|
294 |
+
if existing_metrics_df is not None:
|
295 |
+
print(f"Using existing metrics for {col}")
|
296 |
+
parts = col.split(f"/{variant}-")
|
297 |
+
result = existing_metrics_df[
|
298 |
+
(existing_metrics_df["model"] == parts[0])
|
299 |
+
& (existing_metrics_df[variant] == int(parts[1]))
|
300 |
+
]
|
301 |
+
metrics = result.to_dict("records")[0]
|
302 |
+
else:
|
303 |
+
print(f"Calculating metrics for {col}")
|
304 |
+
metrics = calc_metrics(
|
305 |
+
df["english"], df[col], sources=df["chinese"], debug=True
|
306 |
+
)
|
307 |
print(f"{col}: {metrics}")
|
308 |
|
309 |
+
comet.append(metrics["comet"])
|
310 |
meteor.append(metrics["meteor"])
|
311 |
spbleu.append(metrics["sacrebleu"]["score"])
|
312 |
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
|
|
339 |
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
340 |
)
|
341 |
|
342 |
+
metrics_df["comet"] = comet
|
343 |
metrics_df["meteor"] = meteor
|
344 |
metrics_df["spbleu"] = spbleu
|
345 |
metrics_df["bleu_1"] = bleu_1
|
|
|
348 |
metrics_df["repetition_score"] = repetition_score
|
349 |
metrics_df["total_repetitions"] = total_repetitions
|
350 |
metrics_df["rap"] = metrics_df.apply(
|
351 |
+
lambda x: x["comet"] / math.log10(10 + x["total_repetitions"]), axis=1
|
352 |
)
|
353 |
|
354 |
metrics_df["translation_completeness"] = translation_completeness
|
llm_toolkit/translation_utils_v1.py
DELETED
@@ -1,421 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import pandas as pd
|
4 |
-
import evaluate
|
5 |
-
import seaborn as sns
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
from datasets import load_dataset
|
8 |
-
from langchain_openai import ChatOpenAI
|
9 |
-
from langchain_core.prompts import ChatPromptTemplate
|
10 |
-
from tqdm import tqdm
|
11 |
-
from eval_modules.calc_repetitions import *
|
12 |
-
from llm_toolkit.llm_utils import load_tokenizer
|
13 |
-
|
14 |
-
print(f"loading {__file__}")
|
15 |
-
|
16 |
-
bleu = evaluate.load("bleu")
|
17 |
-
rouge = evaluate.load("rouge")
|
18 |
-
meteor = evaluate.load("meteor")
|
19 |
-
accuracy = evaluate.load("accuracy")
|
20 |
-
|
21 |
-
|
22 |
-
def extract_answer(text, debug=False):
|
23 |
-
if text:
|
24 |
-
# Remove the begin and end tokens
|
25 |
-
text = re.sub(
|
26 |
-
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
|
27 |
-
)
|
28 |
-
if debug:
|
29 |
-
print("--------\nstep 1:", text)
|
30 |
-
|
31 |
-
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
|
32 |
-
if debug:
|
33 |
-
print("--------\nstep 2:", text)
|
34 |
-
|
35 |
-
text = re.sub(
|
36 |
-
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
|
37 |
-
)
|
38 |
-
if debug:
|
39 |
-
print("--------\nstep 3:", text)
|
40 |
-
|
41 |
-
return text
|
42 |
-
|
43 |
-
|
44 |
-
def calc_metrics(references, predictions, debug=False):
|
45 |
-
assert len(references) == len(
|
46 |
-
predictions
|
47 |
-
), f"lengths are difference: {len(references)} != {len(predictions)}"
|
48 |
-
|
49 |
-
predictions = [extract_answer(text) for text in predictions]
|
50 |
-
results = {}
|
51 |
-
|
52 |
-
results["meteor"] = meteor.compute(predictions=predictions, references=references)[
|
53 |
-
"meteor"
|
54 |
-
]
|
55 |
-
|
56 |
-
results["bleu_scores"] = bleu.compute(
|
57 |
-
predictions=predictions, references=references, max_order=4
|
58 |
-
)
|
59 |
-
results["rouge_scores"] = rouge.compute(
|
60 |
-
predictions=predictions, references=references
|
61 |
-
)
|
62 |
-
|
63 |
-
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
|
64 |
-
accuracy = sum(correct) / len(references)
|
65 |
-
|
66 |
-
results["accuracy"] = accuracy
|
67 |
-
if debug:
|
68 |
-
correct_ids = [i for i, c in enumerate(correct) if c == 1]
|
69 |
-
results["correct_ids"] = correct_ids
|
70 |
-
|
71 |
-
return results
|
72 |
-
|
73 |
-
|
74 |
-
def save_results(model_name, results_path, dataset, predictions, debug=False):
|
75 |
-
if not os.path.exists(results_path):
|
76 |
-
# Get the directory part of the file path
|
77 |
-
dir_path = os.path.dirname(results_path)
|
78 |
-
|
79 |
-
# Create all directories in the path (if they don't exist)
|
80 |
-
os.makedirs(dir_path, exist_ok=True)
|
81 |
-
df = dataset.to_pandas()
|
82 |
-
df.drop(columns=["text", "prompt"], inplace=True)
|
83 |
-
else:
|
84 |
-
df = pd.read_csv(results_path, on_bad_lines="warn")
|
85 |
-
|
86 |
-
df[model_name] = predictions
|
87 |
-
|
88 |
-
if debug:
|
89 |
-
print(df.head(1))
|
90 |
-
|
91 |
-
df.to_csv(results_path, index=False)
|
92 |
-
|
93 |
-
|
94 |
-
def load_translation_dataset(data_path, tokenizer=None):
|
95 |
-
train_data_file = data_path.replace(".tsv", "-train.tsv")
|
96 |
-
test_data_file = data_path.replace(".tsv", "-test.tsv")
|
97 |
-
|
98 |
-
if not os.path.exists(train_data_file):
|
99 |
-
print("generating train/test data files")
|
100 |
-
dataset = load_dataset(
|
101 |
-
"csv", data_files=data_path, delimiter="\t", split="train"
|
102 |
-
)
|
103 |
-
print(len(dataset))
|
104 |
-
dataset = dataset.filter(lambda x: x["chinese"] and x["english"])
|
105 |
-
|
106 |
-
datasets = dataset.train_test_split(test_size=0.2)
|
107 |
-
print(len(dataset))
|
108 |
-
|
109 |
-
# Convert to pandas DataFrame
|
110 |
-
train_df = pd.DataFrame(datasets["train"])
|
111 |
-
test_df = pd.DataFrame(datasets["test"])
|
112 |
-
|
113 |
-
# Save to TSV
|
114 |
-
train_df.to_csv(train_data_file, sep="\t", index=False)
|
115 |
-
test_df.to_csv(test_data_file, sep="\t", index=False)
|
116 |
-
|
117 |
-
print("loading train/test data files")
|
118 |
-
datasets = load_dataset(
|
119 |
-
"csv",
|
120 |
-
data_files={"train": train_data_file, "test": test_data_file},
|
121 |
-
delimiter="\t",
|
122 |
-
)
|
123 |
-
|
124 |
-
if tokenizer:
|
125 |
-
translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}"
|
126 |
-
|
127 |
-
def formatting_prompts_func(examples):
|
128 |
-
inputs = examples["chinese"]
|
129 |
-
outputs = examples["english"]
|
130 |
-
|
131 |
-
messages = [
|
132 |
-
{
|
133 |
-
"role": "system",
|
134 |
-
"content": "You are an expert in translating Chinese to English.",
|
135 |
-
},
|
136 |
-
None,
|
137 |
-
]
|
138 |
-
|
139 |
-
model_name = os.getenv("MODEL_NAME")
|
140 |
-
|
141 |
-
# if "mistral" in model_name.lower():
|
142 |
-
# messages = messages[1:]
|
143 |
-
|
144 |
-
texts = []
|
145 |
-
prompts = []
|
146 |
-
for input, output in zip(inputs, outputs):
|
147 |
-
prompt = translation_prompt.format(input)
|
148 |
-
messages[-1] = {"role": "user", "content": prompt}
|
149 |
-
|
150 |
-
prompt = tokenizer.apply_chat_template(
|
151 |
-
messages, tokenize=False, add_generation_prompt=True
|
152 |
-
)
|
153 |
-
prompts.append(prompt)
|
154 |
-
texts.append(prompt + output + tokenizer.eos_token)
|
155 |
-
return {"text": texts, "prompt": prompts}
|
156 |
-
|
157 |
-
datasets = datasets.map(
|
158 |
-
formatting_prompts_func,
|
159 |
-
batched=True,
|
160 |
-
)
|
161 |
-
|
162 |
-
print(datasets)
|
163 |
-
return datasets
|
164 |
-
|
165 |
-
|
166 |
-
def count_entries_with_max_tokens(entries, max_tokens):
|
167 |
-
"""
|
168 |
-
Count the number of entries with the max output tokens or more.
|
169 |
-
|
170 |
-
Parameters:
|
171 |
-
entries (list of int): List of token counts for each entry.
|
172 |
-
max_tokens (int): The maximum token threshold.
|
173 |
-
|
174 |
-
Returns:
|
175 |
-
int: The number of entries with token counts greater than or equal to max_tokens.
|
176 |
-
"""
|
177 |
-
count = 0
|
178 |
-
for tokens in entries:
|
179 |
-
if tokens >= max_tokens:
|
180 |
-
count += 1
|
181 |
-
return count
|
182 |
-
|
183 |
-
|
184 |
-
def detect_repetition_scores(row, col, debug=False):
|
185 |
-
# print(f"row: {row}")
|
186 |
-
newline_score, repetition_score, total_repetitions = detect_repetitions(
|
187 |
-
row[col], debug=debug
|
188 |
-
)
|
189 |
-
newline_score -= row["ground_truth_ews_score"]
|
190 |
-
repetition_score -= row["ground_truth_repetition_score"]
|
191 |
-
total_repetitions -= row["ground_truth_total_repetitions"]
|
192 |
-
|
193 |
-
return pd.Series(
|
194 |
-
[
|
195 |
-
newline_score if newline_score > 0 else 0,
|
196 |
-
repetition_score if repetition_score > 0 else 0,
|
197 |
-
total_repetitions if total_repetitions > 0 else 0,
|
198 |
-
]
|
199 |
-
)
|
200 |
-
|
201 |
-
|
202 |
-
def get_metrics(df, max_output_tokens=2048):
|
203 |
-
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
204 |
-
metrics_df.rename(columns={0: "model"}, inplace=True)
|
205 |
-
metrics_df["rpp"] = metrics_df["model"].apply(lambda x: x.split("rpp-")[-1])
|
206 |
-
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/rpp-")[0])
|
207 |
-
metrics_df.reset_index(inplace=True)
|
208 |
-
metrics_df = metrics_df.drop(columns=["index"])
|
209 |
-
|
210 |
-
tokenizers = {
|
211 |
-
model: load_tokenizer(model) for model in metrics_df["model"].unique()
|
212 |
-
}
|
213 |
-
|
214 |
-
meteor = []
|
215 |
-
bleu_1 = []
|
216 |
-
rouge_l = []
|
217 |
-
ews_score = []
|
218 |
-
repetition_score = []
|
219 |
-
total_repetitions = []
|
220 |
-
num_max_output_tokens = []
|
221 |
-
columns = df.columns[2:]
|
222 |
-
|
223 |
-
df[
|
224 |
-
[
|
225 |
-
"ground_truth_ews_score",
|
226 |
-
"ground_truth_repetition_score",
|
227 |
-
"ground_truth_total_repetitions",
|
228 |
-
]
|
229 |
-
] = df["english"].apply(detect_scores)
|
230 |
-
|
231 |
-
for col in columns:
|
232 |
-
metrics = calc_metrics(df["english"], df[col], debug=True)
|
233 |
-
print(f"{col}: {metrics}")
|
234 |
-
|
235 |
-
meteor.append(metrics["meteor"])
|
236 |
-
bleu_1.append(metrics["bleu_scores"]["bleu"])
|
237 |
-
rouge_l.append(metrics["rouge_scores"]["rougeL"])
|
238 |
-
|
239 |
-
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
|
240 |
-
lambda x: detect_repetition_scores(x, col), axis=1
|
241 |
-
)
|
242 |
-
ews_score.append(df["ews_score"].mean())
|
243 |
-
repetition_score.append(df["repetition_score"].mean())
|
244 |
-
total_repetitions.append(df["total_repetitions"].mean())
|
245 |
-
|
246 |
-
model = col.split("/rpp")[0]
|
247 |
-
|
248 |
-
new_col = f"ground_truth_tokens-{model}"
|
249 |
-
df[new_col] = df["english"].apply(
|
250 |
-
lambda x: len(tokenizers[model](x)["input_ids"])
|
251 |
-
)
|
252 |
-
|
253 |
-
new_col = f"output_tokens-{col}"
|
254 |
-
df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"]))
|
255 |
-
|
256 |
-
num_max_output_tokens.append(
|
257 |
-
count_entries_with_max_tokens(df[new_col], max_output_tokens)
|
258 |
-
)
|
259 |
-
|
260 |
-
metrics_df["meteor"] = meteor
|
261 |
-
metrics_df["bleu_1"] = bleu_1
|
262 |
-
metrics_df["rouge_l"] = rouge_l
|
263 |
-
metrics_df["ews_score"] = ews_score
|
264 |
-
metrics_df["repetition_score"] = repetition_score
|
265 |
-
metrics_df["total_repetitions"] = total_repetitions
|
266 |
-
metrics_df["rap"] = metrics_df.apply(
|
267 |
-
lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1
|
268 |
-
)
|
269 |
-
|
270 |
-
metrics_df["num_max_output_tokens"] = num_max_output_tokens
|
271 |
-
|
272 |
-
return metrics_df
|
273 |
-
|
274 |
-
|
275 |
-
def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
|
276 |
-
plt.figure(figsize=figsize)
|
277 |
-
df_melted = pd.melt(
|
278 |
-
metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
|
279 |
-
)
|
280 |
-
|
281 |
-
barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)
|
282 |
-
|
283 |
-
# Set different hatches for each model
|
284 |
-
hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]
|
285 |
-
|
286 |
-
# Create a dictionary to map models to hatches
|
287 |
-
model_hatches = {
|
288 |
-
model: hatches[i % len(hatches)]
|
289 |
-
for i, model in enumerate(metrics_df["model"].unique())
|
290 |
-
}
|
291 |
-
|
292 |
-
# Apply hatches based on the model
|
293 |
-
num_vars = len(df_melted["variable"].unique())
|
294 |
-
for i, bar in enumerate(barplot.patches):
|
295 |
-
model = df_melted["model"].iloc[i // num_vars]
|
296 |
-
bar.set_hatch(model_hatches[model])
|
297 |
-
|
298 |
-
# Manually update legend to match the bar hatches
|
299 |
-
handles, labels = barplot.get_legend_handles_labels()
|
300 |
-
for handle, model in zip(handles, metrics_df["model"].unique()):
|
301 |
-
handle.set_hatch(model_hatches[model])
|
302 |
-
|
303 |
-
barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
|
304 |
-
for p in barplot.patches:
|
305 |
-
if p.get_height() == 0:
|
306 |
-
continue
|
307 |
-
barplot.annotate(
|
308 |
-
f"{p.get_height():.2f}",
|
309 |
-
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
310 |
-
ha="center",
|
311 |
-
va="center",
|
312 |
-
xytext=(0, 10),
|
313 |
-
textcoords="offset points",
|
314 |
-
)
|
315 |
-
|
316 |
-
barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
|
317 |
-
plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
|
318 |
-
plt.show()
|
319 |
-
|
320 |
-
|
321 |
-
def plot_times(perf_df, ylim=0.421):
|
322 |
-
# Adjusted code to put "train-time" bars in red at the bottom
|
323 |
-
|
324 |
-
fig, ax1 = plt.subplots(figsize=(12, 10))
|
325 |
-
|
326 |
-
color_train = "tab:red"
|
327 |
-
color_eval = "orange"
|
328 |
-
ax1.set_xlabel("Models")
|
329 |
-
ax1.set_ylabel("Time (mins)")
|
330 |
-
ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions
|
331 |
-
ax1.set_xticklabels(perf_df["model"], rotation=90)
|
332 |
-
|
333 |
-
# Plot "train-time" first so it's at the bottom
|
334 |
-
ax1.bar(
|
335 |
-
perf_df["model"],
|
336 |
-
perf_df["train-time(mins)"],
|
337 |
-
color=color_train,
|
338 |
-
label="train-time",
|
339 |
-
)
|
340 |
-
|
341 |
-
# Then, plot "eval-time" on top of "train-time"
|
342 |
-
ax1.bar(
|
343 |
-
perf_df["model"],
|
344 |
-
perf_df["eval-time(mins)"],
|
345 |
-
bottom=perf_df["train-time(mins)"],
|
346 |
-
color=color_eval,
|
347 |
-
label="eval-time",
|
348 |
-
)
|
349 |
-
|
350 |
-
ax1.tick_params(axis="y")
|
351 |
-
ax1.legend(loc="upper left")
|
352 |
-
|
353 |
-
if "meteor" in perf_df.columns:
|
354 |
-
ax2 = ax1.twinx()
|
355 |
-
color_meteor = "tab:blue"
|
356 |
-
ax2.set_ylabel("METEOR", color=color_meteor)
|
357 |
-
ax2.plot(
|
358 |
-
perf_df["model"],
|
359 |
-
perf_df["meteor"],
|
360 |
-
color=color_meteor,
|
361 |
-
marker="o",
|
362 |
-
label="meteor",
|
363 |
-
)
|
364 |
-
ax2.tick_params(axis="y", labelcolor=color_meteor)
|
365 |
-
ax2.legend(loc="upper right")
|
366 |
-
ax2.set_ylim(ax2.get_ylim()[0], ylim)
|
367 |
-
|
368 |
-
# Show numbers in bars
|
369 |
-
for p in ax1.patches:
|
370 |
-
height = p.get_height()
|
371 |
-
if height == 0: # Skip bars with height 0
|
372 |
-
continue
|
373 |
-
ax1.annotate(
|
374 |
-
f"{height:.2f}",
|
375 |
-
(p.get_x() + p.get_width() / 2.0, p.get_y() + height),
|
376 |
-
ha="center",
|
377 |
-
va="center",
|
378 |
-
xytext=(0, -10),
|
379 |
-
textcoords="offset points",
|
380 |
-
)
|
381 |
-
|
382 |
-
fig.tight_layout()
|
383 |
-
plt.show()
|
384 |
-
|
385 |
-
|
386 |
-
def translate_via_llm(text):
|
387 |
-
base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1"
|
388 |
-
llm = ChatOpenAI(
|
389 |
-
model="gpt-4o",
|
390 |
-
temperature=0,
|
391 |
-
max_tokens=None,
|
392 |
-
timeout=None,
|
393 |
-
max_retries=2,
|
394 |
-
base_url=base_url,
|
395 |
-
)
|
396 |
-
|
397 |
-
prompt = ChatPromptTemplate.from_messages(
|
398 |
-
[
|
399 |
-
(
|
400 |
-
"human",
|
401 |
-
"Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}",
|
402 |
-
),
|
403 |
-
]
|
404 |
-
)
|
405 |
-
|
406 |
-
chain = prompt | llm
|
407 |
-
response = chain.invoke(
|
408 |
-
{
|
409 |
-
"input": text,
|
410 |
-
}
|
411 |
-
)
|
412 |
-
return response.content
|
413 |
-
|
414 |
-
|
415 |
-
def translate(text, cache_dict):
|
416 |
-
if text in cache_dict:
|
417 |
-
return cache_dict[text]
|
418 |
-
else:
|
419 |
-
translated_text = translate_via_llm(text)
|
420 |
-
cache_dict[text] = translated_text
|
421 |
-
return translated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/00b_Data Analysis_Few_Shots.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
results/mac-results_few_shots_metrics.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f1a365cbe33bfd36ebae3cb08e0dc4e3c1fe5d2dfbf9f05ddb14df4e5842cd7
|
3 |
+
size 12417
|