from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
from fastai.text.all import * | |
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" | |
repo_id = "inigo99/rotten_tomatoes-classification2" | |
learner = from_pretrained_fastai(repo_id) | |
labels = learner.dls.vocab | |
# Definimos una función que se encarga de llevar a cabo las predicciones | |
def predict(text): | |
pred, pred_idx,probs = learner.predict(text) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Creamos la interfaz y la lanzamos. | |
gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(num_top_classes=2)).launch(share=False) | |