File size: 19,688 Bytes
5637560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""
Mask R-CNN
Display and Visualization Functions.

Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""

import colorsys
import itertools
import os
import random
import sys

import IPython.display
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import lines
from matplotlib import patches
from matplotlib.patches import Polygon
from skimage.measure import find_contours

# Root directory of the project
ROOT_DIR = os.path.abspath("../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils

############################################################
#  Visualization
############################################################


def display_images(
    images, titles=None, cols=4, cmap=None, norm=None, interpolation=None
):
    """Display the given set of images, optionally with titles.
    images: list or array of image tensors in HWC format.
    titles: optional. A list of titles to display with each image.
    cols: number of images per row
    cmap: Optional. Color map to use. For example, "Blues".
    norm: Optional. A Normalize instance to map values to colors.
    interpolation: Optional. Image interpolation to use for display.
    """
    titles = titles if titles is not None else [""] * len(images)
    rows = len(images) // cols + 1
    plt.figure(figsize=(14, 14 * rows // cols))
    i = 1
    for image, title in zip(images, titles):
        plt.subplot(rows, cols, i)
        plt.title(title, fontsize=9)
        plt.axis("off")
        plt.imshow(
            image.astype(np.uint8), cmap=cmap, norm=norm, interpolation=interpolation
        )
        i += 1
    plt.show()


def random_colors(N, bright=True):
    """
    Generate random colors.
    To get visually distinct colors, generate them in HSV space then
    convert to RGB.
    """
    brightness = 1.0 if bright else 0.7
    hsv = [(i / N, 1, brightness) for i in range(N)]
    colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
    random.shuffle(colors)
    return colors


def apply_mask(image, mask, color, alpha=0.5):
    """Apply the given mask to the image."""
    for c in range(3):
        image[:, :, c] = np.where(
            mask == 1,
            image[:, :, c] * (1 - alpha) + alpha * color[c] * 255,
            image[:, :, c],
        )
    return image


def display_instances(
    image,
    boxes,
    masks,
    class_ids,
    class_names,
    scores=None,
    title="",
    figsize=(16, 16),
    ax=None,
    show_mask=True,
    show_bbox=True,
    colors=None,
    captions=None,
):
    """
    boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
    masks: [height, width, num_instances]
    class_ids: [num_instances]
    class_names: list of class names of the dataset
    scores: (optional) confidence scores for each box
    title: (optional) Figure title
    show_mask, show_bbox: To show masks and bounding boxes or not
    figsize: (optional) the size of the image
    colors: (optional) An array or colors to use with each object
    captions: (optional) A list of strings to use as captions for each object
    """
    # Number of instances
    N = boxes.shape[0]
    if not N:
        print("\n*** No instances to display *** \n")
    else:
        assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

    # If no axis is passed, create one and automatically call show()
    auto_show = False
    if not ax:
        _, ax = plt.subplots(1, figsize=figsize)
        auto_show = True

    # Generate random colors
    colors = colors or random_colors(N)

    # Show area outside image boundaries.
    height, width = image.shape[:2]
    ax.set_ylim(height + 10, -10)
    ax.set_xlim(-10, width + 10)
    ax.axis("off")
    ax.set_title(title)

    masked_image = image.astype(np.uint32).copy()
    for i in range(N):
        color = colors[i]

        # Bounding box
        if not np.any(boxes[i]):
            # Skip this instance. Has no bbox. Likely lost in image cropping.
            continue
        y1, x1, y2, x2 = boxes[i]
        if show_bbox:
            p = patches.Rectangle(
                (x1, y1),
                x2 - x1,
                y2 - y1,
                linewidth=2,
                alpha=0.7,
                linestyle="dashed",
                edgecolor=color,
                facecolor="none",
            )
            ax.add_patch(p)

        # Label
        if not captions:
            class_id = class_ids[i]
            score = scores[i] if scores is not None else None
            label = class_names[class_id]
            caption = "{} {:.3f}".format(label, score) if score else label
        else:
            caption = captions[i]
        ax.text(x1, y1 + 8, caption, color="w", size=11, backgroundcolor="none")

        # Mask
        mask = masks[:, :, i]
        if show_mask:
            masked_image = apply_mask(masked_image, mask, color)

        # Mask Polygon
        # Pad to ensure proper polygons for masks that touch image edges.
        padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
        padded_mask[1:-1, 1:-1] = mask
        contours = find_contours(padded_mask, 0.5)
        for verts in contours:
            # Subtract the padding and flip (y, x) to (x, y)
            verts = np.fliplr(verts) - 1
            p = Polygon(verts, facecolor="none", edgecolor=color)
            ax.add_patch(p)

    # ax.imshow(masked_image.astype(np.uint8))

    if auto_show:
        plt.show()

    return masked_image.astype(np.uint8)


def display_differences(
    image,
    gt_box,
    gt_class_id,
    gt_mask,
    pred_box,
    pred_class_id,
    pred_score,
    pred_mask,
    class_names,
    title="",
    ax=None,
    show_mask=True,
    show_box=True,
    iou_threshold=0.5,
    score_threshold=0.5,
):
    """Display ground truth and prediction instances on the same image."""
    # Match predictions to ground truth
    gt_match, pred_match, overlaps = utils.compute_matches(
        gt_box,
        gt_class_id,
        gt_mask,
        pred_box,
        pred_class_id,
        pred_score,
        pred_mask,
        iou_threshold=iou_threshold,
        score_threshold=score_threshold,
    )
    # Ground truth = green. Predictions = red
    colors = [(0, 1, 0, 0.8)] * len(gt_match) + [(1, 0, 0, 1)] * len(pred_match)
    # Concatenate GT and predictions
    class_ids = np.concatenate([gt_class_id, pred_class_id])
    scores = np.concatenate([np.zeros([len(gt_match)]), pred_score])
    boxes = np.concatenate([gt_box, pred_box])
    masks = np.concatenate([gt_mask, pred_mask], axis=-1)
    # Captions per instance show score/IoU
    captions = ["" for m in gt_match] + [
        "{:.2f} / {:.2f}".format(
            pred_score[i],
            (
                overlaps[i, int(pred_match[i])]
                if pred_match[i] > -1
                else overlaps[i].max()
            ),
        )
        for i in range(len(pred_match))
    ]
    # Set title if not provided
    title = (
        title or "Ground Truth and Detections\n GT=green, pred=red, captions: score/IoU"
    )
    # Display
    display_instances(
        image,
        boxes,
        masks,
        class_ids,
        class_names,
        scores,
        ax=ax,
        show_bbox=show_box,
        show_mask=show_mask,
        colors=colors,
        captions=captions,
        title=title,
    )


def draw_rois(image, rois, refined_rois, mask, class_ids, class_names, limit=10):
    """
    anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates.
    proposals: [n, 4] the same anchors but refined to fit objects better.
    """
    masked_image = image.copy()

    # Pick random anchors in case there are too many.
    ids = np.arange(rois.shape[0], dtype=np.int32)
    ids = np.random.choice(ids, limit, replace=False) if ids.shape[0] > limit else ids

    fig, ax = plt.subplots(1, figsize=(12, 12))
    if rois.shape[0] > limit:
        plt.title("Showing {} random ROIs out of {}".format(len(ids), rois.shape[0]))
    else:
        plt.title("{} ROIs".format(len(ids)))

    # Show area outside image boundaries.
    ax.set_ylim(image.shape[0] + 20, -20)
    ax.set_xlim(-50, image.shape[1] + 20)
    ax.axis("off")

    for i, id in enumerate(ids):
        color = np.random.rand(3)
        class_id = class_ids[id]
        # ROI
        y1, x1, y2, x2 = rois[id]
        p = patches.Rectangle(
            (x1, y1),
            x2 - x1,
            y2 - y1,
            linewidth=2,
            edgecolor=color if class_id else "gray",
            facecolor="none",
            linestyle="dashed",
        )
        ax.add_patch(p)
        # Refined ROI
        if class_id:
            ry1, rx1, ry2, rx2 = refined_rois[id]
            p = patches.Rectangle(
                (rx1, ry1),
                rx2 - rx1,
                ry2 - ry1,
                linewidth=2,
                edgecolor=color,
                facecolor="none",
            )
            ax.add_patch(p)
            # Connect the top-left corners of the anchor and proposal for easy visualization
            ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))

            # Label
            label = class_names[class_id]
            ax.text(
                rx1,
                ry1 + 8,
                "{}".format(label),
                color="w",
                size=11,
                backgroundcolor="none",
            )

            # Mask
            m = utils.unmold_mask(mask[id], rois[id][:4].astype(np.int32), image.shape)
            masked_image = apply_mask(masked_image, m, color)

    ax.imshow(masked_image)

    # Print stats
    print("Positive ROIs: ", class_ids[class_ids > 0].shape[0])
    print("Negative ROIs: ", class_ids[class_ids == 0].shape[0])
    print(
        "Positive Ratio: {:.2f}".format(
            class_ids[class_ids > 0].shape[0] / class_ids.shape[0]
        )
    )


# TODO: Replace with matplotlib equivalent?
def draw_box(image, box, color):
    """Draw 3-pixel width bounding boxes on the given image array.
    color: list of 3 int values for RGB.
    """
    y1, x1, y2, x2 = box
    image[y1 : y1 + 2, x1:x2] = color
    image[y2 : y2 + 2, x1:x2] = color
    image[y1:y2, x1 : x1 + 2] = color
    image[y1:y2, x2 : x2 + 2] = color
    return image


def display_top_masks(image, mask, class_ids, class_names, limit=4):
    """Display the given image and the top few class masks."""
    to_display = []
    titles = []
    to_display.append(image)
    titles.append("H x W={}x{}".format(image.shape[0], image.shape[1]))
    # Pick top prominent classes in this image
    unique_class_ids = np.unique(class_ids)
    mask_area = [
        np.sum(mask[:, :, np.where(class_ids == i)[0]]) for i in unique_class_ids
    ]
    top_ids = [
        v[0]
        for v in sorted(
            zip(unique_class_ids, mask_area), key=lambda r: r[1], reverse=True
        )
        if v[1] > 0
    ]
    # Generate images and titles
    for i in range(limit):
        class_id = top_ids[i] if i < len(top_ids) else -1
        # Pull masks of instances belonging to the same class.
        m = mask[:, :, np.where(class_ids == class_id)[0]]
        m = np.sum(m * np.arange(1, m.shape[-1] + 1), -1)
        to_display.append(m)
        titles.append(class_names[class_id] if class_id != -1 else "-")
    display_images(to_display, titles=titles, cols=limit + 1, cmap="Blues_r")


def plot_precision_recall(AP, precisions, recalls):
    """Draw the precision-recall curve.

    AP: Average precision at IoU >= 0.5
    precisions: list of precision values
    recalls: list of recall values
    """
    # Plot the Precision-Recall curve
    _, ax = plt.subplots(1)
    ax.set_title("Precision-Recall Curve. AP@50 = {:.3f}".format(AP))
    ax.set_ylim(0, 1.1)
    ax.set_xlim(0, 1.1)
    _ = ax.plot(recalls, precisions)


def plot_overlaps(
    gt_class_ids, pred_class_ids, pred_scores, overlaps, class_names, threshold=0.5
):
    """Draw a grid showing how ground truth objects are classified.
    gt_class_ids: [N] int. Ground truth class IDs
    pred_class_id: [N] int. Predicted class IDs
    pred_scores: [N] float. The probability scores of predicted classes
    overlaps: [pred_boxes, gt_boxes] IoU overlaps of predictions and GT boxes.
    class_names: list of all class names in the dataset
    threshold: Float. The prediction probability required to predict a class
    """
    gt_class_ids = gt_class_ids[gt_class_ids != 0]
    pred_class_ids = pred_class_ids[pred_class_ids != 0]

    plt.figure(figsize=(12, 10))
    plt.imshow(overlaps, interpolation="nearest", cmap=plt.cm.Blues)
    plt.yticks(
        np.arange(len(pred_class_ids)),
        [
            "{} ({:.2f})".format(class_names[int(id)], pred_scores[i])
            for i, id in enumerate(pred_class_ids)
        ],
    )
    plt.xticks(
        np.arange(len(gt_class_ids)),
        [class_names[int(id)] for id in gt_class_ids],
        rotation=90,
    )

    thresh = overlaps.max() / 2.0
    for i, j in itertools.product(range(overlaps.shape[0]), range(overlaps.shape[1])):
        text = ""
        if overlaps[i, j] > threshold:
            text = "match" if gt_class_ids[j] == pred_class_ids[i] else "wrong"
        color = (
            "white"
            if overlaps[i, j] > thresh
            else "black"
            if overlaps[i, j] > 0
            else "grey"
        )
        plt.text(
            j,
            i,
            "{:.3f}\n{}".format(overlaps[i, j], text),
            horizontalalignment="center",
            verticalalignment="center",
            fontsize=9,
            color=color,
        )

    plt.tight_layout()
    plt.xlabel("Ground Truth")
    plt.ylabel("Predictions")


def draw_boxes(
    image,
    boxes=None,
    refined_boxes=None,
    masks=None,
    captions=None,
    visibilities=None,
    title="",
    ax=None,
):
    """Draw bounding boxes and segmentation masks with different
    customizations.

    boxes: [N, (y1, x1, y2, x2, class_id)] in image coordinates.
    refined_boxes: Like boxes, but draw with solid lines to show
        that they're the result of refining 'boxes'.
    masks: [N, height, width]
    captions: List of N titles to display on each box
    visibilities: (optional) List of values of 0, 1, or 2. Determine how
        prominent each bounding box should be.
    title: An optional title to show over the image
    ax: (optional) Matplotlib axis to draw on.
    """
    # Number of boxes
    assert boxes is not None or refined_boxes is not None
    N = boxes.shape[0] if boxes is not None else refined_boxes.shape[0]

    # Matplotlib Axis
    if not ax:
        _, ax = plt.subplots(1, figsize=(12, 12))

    # Generate random colors
    colors = random_colors(N)

    # Show area outside image boundaries.
    margin = image.shape[0] // 10
    ax.set_ylim(image.shape[0] + margin, -margin)
    ax.set_xlim(-margin, image.shape[1] + margin)
    ax.axis("off")

    ax.set_title(title)

    masked_image = image.astype(np.uint32).copy()
    for i in range(N):
        # Box visibility
        visibility = visibilities[i] if visibilities is not None else 1
        if visibility == 0:
            color = "gray"
            style = "dotted"
            alpha = 0.5
        elif visibility == 1:
            color = colors[i]
            style = "dotted"
            alpha = 1
        elif visibility == 2:
            color = colors[i]
            style = "solid"
            alpha = 1

        # Boxes
        if boxes is not None:
            if not np.any(boxes[i]):
                # Skip this instance. Has no bbox. Likely lost in cropping.
                continue
            y1, x1, y2, x2 = boxes[i]
            p = patches.Rectangle(
                (x1, y1),
                x2 - x1,
                y2 - y1,
                linewidth=2,
                alpha=alpha,
                linestyle=style,
                edgecolor=color,
                facecolor="none",
            )
            ax.add_patch(p)

        # Refined boxes
        if refined_boxes is not None and visibility > 0:
            ry1, rx1, ry2, rx2 = refined_boxes[i].astype(np.int32)
            p = patches.Rectangle(
                (rx1, ry1),
                rx2 - rx1,
                ry2 - ry1,
                linewidth=2,
                edgecolor=color,
                facecolor="none",
            )
            ax.add_patch(p)
            # Connect the top-left corners of the anchor and proposal
            if boxes is not None:
                ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color))

        # Captions
        if captions is not None:
            caption = captions[i]
            # If there are refined boxes, display captions on them
            if refined_boxes is not None:
                y1, x1, y2, x2 = ry1, rx1, ry2, rx2
            ax.text(
                x1,
                y1,
                caption,
                size=11,
                verticalalignment="top",
                color="w",
                backgroundcolor="none",
                bbox={"facecolor": color, "alpha": 0.5, "pad": 2, "edgecolor": "none"},
            )

        # Masks
        if masks is not None:
            mask = masks[:, :, i]
            masked_image = apply_mask(masked_image, mask, color)
            # Mask Polygon
            # Pad to ensure proper polygons for masks that touch image edges.
            padded_mask = np.zeros(
                (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8
            )
            padded_mask[1:-1, 1:-1] = mask
            contours = find_contours(padded_mask, 0.5)
            for verts in contours:
                # Subtract the padding and flip (y, x) to (x, y)
                verts = np.fliplr(verts) - 1
                p = Polygon(verts, facecolor="none", edgecolor=color)
                ax.add_patch(p)
    ax.imshow(masked_image.astype(np.uint8))


def display_table(table):
    """Display values in a table format.
    table: an iterable of rows, and each row is an iterable of values.
    """
    html = ""
    for row in table:
        row_html = ""
        for col in row:
            row_html += "<td>{:40}</td>".format(str(col))
        html += "<tr>" + row_html + "</tr>"
    html = "<table>" + html + "</table>"
    IPython.display.display(IPython.display.HTML(html))


def display_weight_stats(model):
    """Scans all the weights in the model and returns a list of tuples
    that contain stats about each weight.
    """
    layers = model.get_trainable_layers()
    table = [["WEIGHT NAME", "SHAPE", "MIN", "MAX", "STD"]]
    for l in layers:
        weight_values = l.get_weights()  # list of Numpy arrays
        weight_tensors = l.weights  # list of TF tensors
        for i, w in enumerate(weight_values):
            weight_name = weight_tensors[i].name
            # Detect problematic layers. Exclude biases of conv layers.
            alert = ""
            if w.min() == w.max() and not (l.__class__.__name__ == "Conv2D" and i == 1):
                alert += "<span style='color:red'>*** dead?</span>"
            if np.abs(w.min()) > 1000 or np.abs(w.max()) > 1000:
                alert += "<span style='color:red'>*** Overflow?</span>"
            # Add row
            table.append(
                [
                    weight_name + alert,
                    str(w.shape),
                    "{:+9.4f}".format(w.min()),
                    "{:+10.4f}".format(w.max()),
                    "{:+9.4f}".format(w.std()),
                ]
            )
    display_table(table)