Spaces:
Runtime error
Runtime error
import numpy as np | |
import tensorflow as tf | |
class Parameters: | |
# data level | |
image_count = 3670 | |
image_size = 384 | |
batch_size = 12 | |
num_grad_accumulation = 8 | |
class_number = 5 | |
val_split = 0.2 | |
autotune = tf.data.AUTOTUNE | |
# hparams | |
epochs = 10 | |
lr_sched = "cosine_restart" | |
lr_base = 0.016 | |
lr_min = 0 | |
lr_decay_epoch = 2.4 | |
lr_warmup_epoch = 5 | |
lr_decay_factor = 0.97 | |
scaled_lr = lr_base * (batch_size / 256.0) | |
scaled_lr_min = lr_min * (batch_size / 256.0) | |
num_validation_sample = int(image_count * val_split) | |
num_training_sample = image_count - num_validation_sample | |
train_step = int(np.ceil(num_training_sample / float(batch_size))) | |
total_steps = train_step * epochs | |
params = Parameters() | |
patch_size = (2, 2) # 4-by-4 sized patches | |
dropout_rate = 0.5 # Dropout rate | |
num_heads = 8 # Attention heads | |
embed_dim = 64 # Embedding dimension | |
num_mlp = 128 # MLP layer size | |
qkv_bias = True # Convert embedded patches to query, key, and values with a learnable additive value | |
window_size = 2 # Size of attention window | |
shift_size = 1 # Size of shifting window | |
image_dimension = 24 # Initial image size / Input size of the transformer model | |
num_patch_x = image_dimension // patch_size[0] | |
num_patch_y = image_dimension // patch_size[1] | |