import os import gdown import gradio as gr import tensorflow as tf from config import Parameters from models.hybrid_model import GradientAccumulation from utils.model_utils import * from utils.viz_utils import make_gradcam_heatmap from utils.viz_utils import save_and_display_gradcam image_size = Parameters().image_size str_labels = [ "daisy", "dandelion", "roses", "sunflowers", "tulips", ] def get_model(): """Get the model.""" model = GradientAccumulation( n_gradients=params.num_grad_accumulation, model_name="HybridModel" ) _ = model(tf.ones((1, params.image_size, params.image_size, 3)))[0].shape return model def get_model_weight(model_id): """Get the trained weights.""" if not os.path.exists("model.h5"): model_weight = gdown.download(id=model_id, quiet=False) else: model_weight = "model.h5" return model_weight def load_model(model_id): """Load trained model.""" weight = get_model_weight(model_id) model = get_model() model.load_weights(weight) return model def image_process(image): """Image preprocess for model input.""" image = tf.cast(image, dtype=tf.float32) original_shape = image.shape image = tf.image.resize(image, [image_size, image_size]) image = image[tf.newaxis, ...] return image, original_shape def predict_fn(image): """A predict function that will be invoked by gradio.""" loaded_model = load_model(model_id="1y6tseN0194T6d-4iIh5wo7RL9ttQERe0") loaded_image, original_shape = image_process(image) heatmap_a, heatmap_b, preds = make_gradcam_heatmap(loaded_image, loaded_model) int_label = tf.argmax(preds, axis=-1).numpy()[0] str_label = str_labels[int_label] overaly_a = save_and_display_gradcam( loaded_image[0], heatmap_a, image_shape=original_shape[:2] ) overlay_b = save_and_display_gradcam( loaded_image[0], heatmap_b, image_shape=original_shape[:2] ) return [f"Predicted: {str_label}", overaly_a, overlay_b] iface = gr.Interface( fn=predict_fn, inputs=gr.inputs.Image(label="Input Image"), outputs=[ gr.outputs.Label(label="Prediction"), gr.inputs.Image(label="CNN GradCAM"), gr.inputs.Image(label="Transformer GradCAM"), ], title="Hybrid EfficientNet Swin Transformer Demo", description="The model is trained on tf_flowers dataset Flowers Recognition Dataset. It provides 5 categories, namely: `daisy`, `rose`, `sunflower`, `tulip`, `dandelion`. One example from each class is provided in the Example section.", examples=[ ["examples/dandelion.jpg"], ["examples/sunflower.jpg"], ["examples/tulip.jpg"], ["examples/daisy.jpg"], ["examples/rose.jpg"], ], ) iface.launch()