Video-FocalNet / app.py
innat's picture
Update app.py
389dff5
raw
history blame
2 kB
import gradio as gr
import numpy as np
import zipfile
import imageio
import tensorflow as tf
from tensorflow import keras
from utils import read_video, frame_sampling
from utils import num_frames, patch_size, input_size
from labels import K400_label_map
LABEL_MAPS = {
'K400': K400_label_map,
}
ALL_MODELS = [
'TFVideoFocalNetB_K400_8x224',
]
sample_example = [
["examples/k400.mp4", ALL_MODELS[0]],
]
def get_model(model_type):
model_path = keras.utils.get_file(
origin=f'https://github.com/innat/Video-FocalNets/releases/download/v1.1/{model_type}.zip',
)
with zipfile.ZipFile(model_path, 'r') as zip_ref:
zip_ref.extractall('./')
model = keras.models.load_model(model_type)
label_map = LABEL_MAPS.get('K400')
label_map = {v: k for k, v in label_map.items()}
return model, label_map
def inference(video_file, model_type):
# get sample data
container = read_video(video_file)
frames = frame_sampling(container, num_frames=num_frames)
# get models
model, label_map = get_model(model_type)
model.trainable = False
# inference on model
outputs = model(frames[None, ...], training=False)
probabilities = tf.nn.softmax(outputs).numpy().squeeze(0)
confidences = {
label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
}
return confidences
def main():
iface = gr.Interface(
fn=inference,
inputs=[
gr.Video(type="file", label="Input Video"),
gr.Dropdown(
choices=ALL_MODELS,
label="Model"
)
],
outputs=gr.Label(num_top_classes=3, label='scores'),
examples=sample_example,
title="Video-FocalNets: Spatio-Temporal Focal Modulation.",
description="Keras reimplementation of <a href='https://github.com/innat/Video-FocalNets'>Video-FocalNets</a> is presented here."
)
iface.launch()
if __name__ == '__main__':
main()