innat commited on
Commit
d22cc84
1 Parent(s): 60954ed

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -0
app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import zipfile
4
+ import imageio
5
+
6
+ import tensorflow as tf
7
+ from tensorflow import keras
8
+
9
+ from utils import TubeMaskingGenerator
10
+ from utils import read_video, frame_sampling, denormalize, reconstrunction
11
+ from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
12
+ from labels import K400_label_map, SSv2_label_map, UCF_label_map
13
+
14
+
15
+ LABEL_MAPS = {
16
+ 'K400': K400_label_map,
17
+ 'SSv2': SSv2_label_map,
18
+ 'UCF' : UCF_label_map
19
+ }
20
+
21
+ ALL_MODELS = [
22
+ 'TFVideoMAE_L_K400_16x224',
23
+ 'TFVideoMAE_B_SSv2_16x224',
24
+ 'TFVideoMAE_B_UCF_16x224',
25
+ ]
26
+
27
+ sample_example = [
28
+ ["examples/k400.mp4", ALL_MODELS[0], 0.9],
29
+ ["examples/ssv2.mp4", ALL_MODELS[1], 0.8],
30
+ ["examples/ucf.mp4", ALL_MODELS[2], 0.7],
31
+ ]
32
+
33
+ def tube_mask_generator(mask_ratio):
34
+ window_size = (
35
+ num_frames // 2,
36
+ input_size // patch_size[0],
37
+ input_size // patch_size[1]
38
+ )
39
+ tube_mask = TubeMaskingGenerator(
40
+ input_size=window_size,
41
+ mask_ratio=mask_ratio
42
+ )
43
+ make_bool = tube_mask()
44
+ bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32)
45
+ bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0)
46
+ bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool)
47
+ return bool_masked_pos_tf
48
+
49
+
50
+ def get_model(model_type):
51
+ ft_path = keras.utils.get_file(
52
+ origin=f'https://github.com/innat/VideoMAE/releases/download/v1.1/{model_type}_FT.zip',
53
+ )
54
+ pt_path = keras.utils.get_file(
55
+ origin=f'https://github.com/innat/VideoMAE/releases/download/v1.1/{model_type}_PT.zip',
56
+ )
57
+
58
+ with zipfile.ZipFile(ft_path, 'r') as zip_ref:
59
+ zip_ref.extractall('./')
60
+
61
+ with zipfile.ZipFile(pt_path, 'r') as zip_ref:
62
+ zip_ref.extractall('./')
63
+
64
+ ft_model = keras.models.load_model(model_type + '_FT')
65
+ pt_model = keras.models.load_model(model_type + '_PT')
66
+
67
+ if 'K400' in model_type:
68
+ data_type = 'K400'
69
+ elif 'SSv2' in model_type:
70
+ data_type = 'SSv2'
71
+ else:
72
+ data_type = 'UCF'
73
+
74
+ label_map = LABEL_MAPS.get(data_type)
75
+ label_map = {v: k for k, v in label_map.items()}
76
+
77
+ return ft_model, pt_model, label_map
78
+
79
+
80
+ def inference(video_file, model_type, mask_ratio):
81
+ # get sample data
82
+ container = read_video(video_file)
83
+ frames = frame_sampling(container, num_frames=num_frames)
84
+
85
+ # get models
86
+ bool_masked_pos_tf = tube_mask_generator(mask_ratio)
87
+ ft_model, pt_model, label_map = get_model(model_type)
88
+ ft_model.trainable = False
89
+ pt_model.trainable = False
90
+
91
+ # inference on fine-tune model
92
+ outputs_ft = ft_model(frames[None, ...], training=False)
93
+ probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0)
94
+ confidences = {
95
+ label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
96
+ }
97
+
98
+ # inference on pre-trained model
99
+ outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False)
100
+ reconstruct_output, mask = reconstrunction(
101
+ frames[None, ...], bool_masked_pos_tf, outputs_pt
102
+ )
103
+
104
+ # post process
105
+ input_frame = denormalize(frames)
106
+ input_mask = denormalize(mask[0] * frames)
107
+ output_frame = denormalize(reconstruct_output)
108
+
109
+ frames = []
110
+ for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame):
111
+ combined_frame = np.hstack([frame_a, frame_b, frame_c])
112
+ frames.append(combined_frame)
113
+
114
+ combined_gif = 'combined.gif'
115
+ imageio.mimsave(combined_gif, frames, duration=300, loop=0)
116
+ return confidences, combined_gif
117
+
118
+
119
+ def main():
120
+ iface = gr.Interface(
121
+ fn=inference,
122
+ inputs=[
123
+ gr.Video(type="file", label="Input Video"),
124
+ gr.Dropdown(
125
+ choices=ALL_MODELS,
126
+ default="TFVideoMAE_L_K400_16x224",
127
+ label="Model"
128
+ ),
129
+ gr.Slider(
130
+ 0.5,
131
+ 1.0,
132
+ step=0.1,
133
+ default=0.5,
134
+ label='Mask Ratio'
135
+ )
136
+ ],
137
+ outputs=[
138
+ gr.Label(num_top_classes=3, label='scores'),
139
+ gr.Image(type="filepath", label='reconstructed')
140
+ ],
141
+ examples=sample_example,
142
+ title="VideoMAE",
143
+ description="Keras reimplementation of <a href='https://github.com/innat/VideoMAE'>VideoMAE</a> is presented here."
144
+ )
145
+
146
+ iface.launch()
147
+
148
+ if __name__ == '__main__':
149
+ main()