Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,90 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import zipfile
|
4 |
+
import imageio
|
5 |
|
6 |
+
import tensorflow as tf
|
7 |
+
from tensorflow import keras
|
8 |
|
9 |
+
from utils import read_video, frame_sampling
|
10 |
+
from utils import num_frames, patch_size, input_size
|
11 |
+
from labels import K400_label_map, SSv2_label_map
|
12 |
+
|
13 |
+
|
14 |
+
LABEL_MAPS = {
|
15 |
+
'K400': K400_label_map,
|
16 |
+
'SSv2': SSv2_label_map,
|
17 |
+
}
|
18 |
+
|
19 |
+
ALL_MODELS = [
|
20 |
+
'TFVideoSwinT_K400_IN1K_P244_W877_32x224',
|
21 |
+
'TFVideoSwinB_SSV2_K400_P244_W1677_32x224',
|
22 |
+
]
|
23 |
+
|
24 |
+
sample_example = [
|
25 |
+
["examples/k400.mp4", ALL_MODELS[0]],
|
26 |
+
["examples/ssv2.mp4", ALL_MODELS[1]],
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
def get_model(model_type):
|
31 |
+
model_path = keras.utils.get_file(
|
32 |
+
origin=f'https://github.com/innat/VideoSwin/releases/download/v1.1/{model_type}.zip',
|
33 |
+
)
|
34 |
+
with zipfile.ZipFile(model_path, 'r') as zip_ref:
|
35 |
+
zip_ref.extractall('./')
|
36 |
+
|
37 |
+
model = keras.models.load_model(model_type)
|
38 |
+
|
39 |
+
if 'K400' in model_type:
|
40 |
+
data_type = 'K400'
|
41 |
+
elif 'SSv2' in model_type:
|
42 |
+
data_type = 'SSv2'
|
43 |
+
|
44 |
+
label_map = LABEL_MAPS.get(data_type)
|
45 |
+
label_map = {v: k for k, v in label_map.items()}
|
46 |
+
|
47 |
+
return model, label_map
|
48 |
+
|
49 |
+
|
50 |
+
def inference(video_file, model_type):
|
51 |
+
# get sample data
|
52 |
+
container = read_video(video_file)
|
53 |
+
frames = frame_sampling(container, num_frames=num_frames)
|
54 |
+
|
55 |
+
# get models
|
56 |
+
model, label_map = get_model(model_type)
|
57 |
+
model.trainable = False
|
58 |
+
|
59 |
+
# inference on model
|
60 |
+
outputs = model(frames[None, ...], training=False)
|
61 |
+
probabilities = tf.nn.softmax(outputs).numpy().squeeze(0)
|
62 |
+
confidences = {
|
63 |
+
label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
|
64 |
+
}
|
65 |
+
return confidences
|
66 |
+
|
67 |
+
|
68 |
+
def main():
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=inference,
|
71 |
+
inputs=[
|
72 |
+
gr.Video(type="file", label="Input Video"),
|
73 |
+
gr.Dropdown(
|
74 |
+
choices=ALL_MODELS,
|
75 |
+
default="TFVideoSwinT_K400_IN1K_P244_W877_32x224",
|
76 |
+
label="Model"
|
77 |
+
)
|
78 |
+
],
|
79 |
+
outputs=[
|
80 |
+
gr.Label(num_top_classes=3, label='scores'),
|
81 |
+
],
|
82 |
+
examples=sample_example,
|
83 |
+
title="VideoSwin: Video Swin Transformer",
|
84 |
+
description="Keras reimplementation of <a href='https://github.com/innat/VideoSwin'>VideoSwin</a> is presented here."
|
85 |
+
)
|
86 |
+
|
87 |
+
iface.launch()
|
88 |
+
|
89 |
+
if __name__ == '__main__':
|
90 |
+
main()
|