innat commited on
Commit
c3c0446
·
1 Parent(s): 5779623

Create utils.py

Browse files
Files changed (1) hide show
  1. utils.py +39 -0
utils.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import numpy as np
3
+ from einops import rearrange
4
+ from decord import VideoReader
5
+
6
+ num_frames = 32
7
+ input_size = 224
8
+ patch_size = (16, 16)
9
+ IMAGENET_MEAN = np.array([123.675, 116.28, 103.53])
10
+ IMAGENET_STD = np.array([58.395, 57.12, 57.375])
11
+
12
+ def format_frames(frame, output_size):
13
+ frame = tf.image.convert_image_dtype(frame, tf.uint8)
14
+ frame = tf.image.resize(frame, size=output_size)
15
+ frame = frame - IMAGENET_MEAN
16
+ frame = frame / IMAGENET_STD
17
+ return frame
18
+
19
+ def read_video(file_path):
20
+ container = VideoReader(file_path)
21
+ return container
22
+
23
+ def frame_sampling(container, num_frames):
24
+ interval = len(container) // num_frames
25
+ bids = np.arange(num_frames) * interval
26
+ offset = np.random.randint(interval, size=bids.shape)
27
+ frame_index = bids + offset
28
+ frames = container.get_batch(frame_index).asnumpy()
29
+ frames = np.stack(frames)
30
+ frames = format_frames(frames, [input_size] * 2)
31
+ return frames
32
+
33
+ def denormalize(z):
34
+ mean = np.array([123.675, 116.28, 103.53])
35
+ variance = np.array([np.square(58.395), np.square(57.12), np.square(57.375)])
36
+ std = np.sqrt(variance) # no need var and std, todo: update here!
37
+ x = (z * std) + mean
38
+ x = x.clip(0, 255)
39
+ return x