GPT2-large / app.py
JunzhaoSun
init
14f33b1
raw
history blame
3.16 kB
#!/usr/local/bin/python3
#-*- coding:utf-8 -*-
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
checkpoint = "gpt2-large"
# checkpoint = "/innev/open-ai/huggingface/models/gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
def generate(text):
# text = 'Who was Jim Henson ? Jim Henson was a'
# 编码一段文本
# 编码后为[8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257]
indexed_tokens = tokenizer.encode(text)
# 转换为pytorch tensor
# tensor([[ 8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257]])
# shape为 torch.Size([1, 11])
tokens_tensor = torch.tensor([indexed_tokens])
# 设置为evaluation模式,去取消激活dropout等模块。
# 在huggingface/transformers框架中,默认就是eval模式
model.eval()
# 预测所有token
with torch.no_grad():
# 将输入tensor输入,就得到了模型的输出,非常简单
# outputs是一个元组,所有huggingface/transformers模型的输出都是元组
# 本初的元组有两个,第一个是预测得分(没经过softmax之前的,也叫作logits),
# 第二个是past,里面的attention计算的key value值
# 此时我们需要的是第一个值
outputs = model(tokens_tensor)
# predictions shape为 torch.Size([1, 11, 50257]),
# 也就是11个词每个词的预测得分(没经过softmax之前的)
# 也叫做logits
predictions = outputs[0]
# 我们需要预测下一个单词,所以是使用predictions第一个batch,最后一个词的logits去计算
# predicted_index = 582,通过计算最大得分的索引得到的
predicted_index = torch.argmax(predictions[0, -1, :]).item()
# 反向解码为我们需要的文本
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
# predicted_text = tokenizer.decode([predicted_index])
# 解码后的文本:'Who was Jim Henson? Jim Henson was a man'
# 成功预测出单词 'man'
return predicted_text
def doloop(prompts):
text = prompts
total = 1
while text[-1] != "." and total < 20:
text = generate(text)
print("Index %s: %s" % (total, text))
total = total + 1
return text, total
title = "GPT2 large"
description = """
本例为使用GPT2模型的简单推测语句DEMO,输入前面的句子,推测出后面的句子。
使用原始模型,未经过微调。只支持英文输入输出。
"""
examples = [
["Who was Jim Henson ? Jim Henson was a", None],
["My name is Julien and I like to", None],
["My name is Thomas and my main", None],
["My name is Mariama, my favorite", None],
["My name is Clara and I am", None],
]
gr.Interface(
fn=doloop,
inputs=gr.Text(label="输入前置语句"),
outputs=[
gr.Text(label="补全后输出"),
gr.Text(label="循环次数"),
],
title=title,
description=description,
examples=examples,
).launch()