GPT2-large / app.py
JunzhaoSun
增加默认空值
9254ad0
raw
history blame
4.95 kB
#!/usr/local/bin/python3
#-*- coding:utf-8 -*-
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
checkpoint = "gpt2-large"
# checkpoint = "/innev/open-ai/huggingface/models/gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# model = AutoModelForCausalLM.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, pad_token_id=tokenizer.eos_token_id)
# 简单生成
def sampleGen(text):
# text = 'Who was Jim Henson ? Jim Henson was a'
# 编码一段文本
# 编码后为[8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257]
indexed_tokens = tokenizer.encode(text)
# 转换为pytorch tensor
# tensor([[ 8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257]])
# shape为 torch.Size([1, 11])
tokens_tensor = torch.tensor([indexed_tokens])
# 设置为evaluation模式,去取消激活dropout等模块。
# 在huggingface/transformers框架中,默认就是eval模式
model.eval()
# 预测所有token
with torch.no_grad():
# 将输入tensor输入,就得到了模型的输出,非常简单
# outputs是一个元组,所有huggingface/transformers模型的输出都是元组
# 本初的元组有两个,第一个是预测得分(没经过softmax之前的,也叫作logits),
# 第二个是past,里面的attention计算的key value值
# 此时我们需要的是第一个值
outputs = model(tokens_tensor)
# predictions shape为 torch.Size([1, 11, 50257]),
# 也就是11个词每个词的预测得分(没经过softmax之前的)
# 也叫做logits
predictions = outputs[0]
# 我们需要预测下一个单词,所以是使用predictions第一个batch,最后一个词的logits去计算
# predicted_index = 582,通过计算最大得分的索引得到的
predicted_index = torch.argmax(predictions[0, -1, :]).item()
# 反向解码为我们需要的文本
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])
# predicted_text = tokenizer.decode([predicted_index])
# 解码后的文本:'Who was Jim Henson? Jim Henson was a man'
# 成功预测出单词 'man'
return predicted_text
# 关键词预测 生成文本
def loopGen(prompts):
text = prompts
total = 1
while text[-1] != "." and total < 20:
text = sampleGen(text)
print("Index %s: %s" % (total, text))
total = total + 1
return text, total
# 贪心搜索 生成文本
def greedySearch(prompts):
input_ids = tokenizer(prompts, return_tensors='pt').input_ids
# generate the result with greedy search
output = model.generate(input_ids, max_length=128)
text = tokenizer.decode(output[0], skip_special_tokens=True)
return text, 1
# 随机方法 生成文本
def randomSearch(prompts):
input_ids = tokenizer(prompts, return_tensors='pt').input_ids
# generate the result with random search
torch.manual_seed(0.)
output = model.generate(input_ids, do_sample=True, max_length=128, top_p=0.95, top_k=0)
text = tokenizer.decode(output[0], skip_special_tokens=True)
return text, 1
# 对比搜索 生成文本
def contrastiveSearch(prompts):
input_ids = tokenizer(prompts, return_tensors='pt').input_ids
# generate the result with contrastive search
output = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=512)
text = tokenizer.decode(output[0], skip_special_tokens=True)
return text, 1
def predict(searchType, prompts='Who was Jim Henson ? Jim Henson was a'):
if searchType == "贪心搜索":
return greedySearch(prompts)
elif searchType == "随机方法":
return randomSearch(prompts)
elif searchType == "对比搜索":
return contrastiveSearch(prompts)
else:
return loopGen(prompts)
title = "GPT2 large"
searchMapping = ['关键词预测', '贪心搜索', '随机方法', '对比搜索']
description = """
本例为使用GPT2模型的简单推测语句DEMO,输入前面的句子,推测出后面的句子。
使用原始模型,未经过微调。只支持英文输入输出。
"""
examples = [
[None, "DeepMind Company is", None],
[None, "Who was Jim Henson ? Jim Henson was a", None],
[None, "China is", None]
]
article = """
## 文章参考
- [在 Transformers 中使用对比搜索生成可媲美人类水平的文本 🤗](https://mp.weixin.qq.com/s/mydQLDlGUzFJuNBCIYc3CA)
"""
gr.Interface(
fn=predict,
inputs=[
gr.Radio(label="搜索方法", choices=searchMapping, value="关键词预测"),
gr.Text(label="输入前置语句"),
],
outputs=[
gr.Text(label="生成文本"),
gr.Text(label="循环次数"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch()