Spaces:
Sleeping
Sleeping
#!/usr/local/bin/python3 | |
#-*- coding:utf-8 -*- | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import os | |
checkpoint = "gpt2-large" | |
# checkpoint = "/innev/open-ai/huggingface/models/gpt2-large" | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
# model = AutoModelForCausalLM.from_pretrained(checkpoint) | |
model = AutoModelForCausalLM.from_pretrained(checkpoint, pad_token_id=tokenizer.eos_token_id) | |
# 简单生成 | |
def sampleGen(text): | |
# text = 'Who was Jim Henson ? Jim Henson was a' | |
# 编码一段文本 | |
# 编码后为[8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257] | |
indexed_tokens = tokenizer.encode(text) | |
# 转换为pytorch tensor | |
# tensor([[ 8241, 373, 5395, 367, 19069, 5633, 5395, 367, 19069, 373, 257]]) | |
# shape为 torch.Size([1, 11]) | |
tokens_tensor = torch.tensor([indexed_tokens]) | |
# 设置为evaluation模式,去取消激活dropout等模块。 | |
# 在huggingface/transformers框架中,默认就是eval模式 | |
model.eval() | |
# 预测所有token | |
with torch.no_grad(): | |
# 将输入tensor输入,就得到了模型的输出,非常简单 | |
# outputs是一个元组,所有huggingface/transformers模型的输出都是元组 | |
# 本初的元组有两个,第一个是预测得分(没经过softmax之前的,也叫作logits), | |
# 第二个是past,里面的attention计算的key value值 | |
# 此时我们需要的是第一个值 | |
outputs = model(tokens_tensor) | |
# predictions shape为 torch.Size([1, 11, 50257]), | |
# 也就是11个词每个词的预测得分(没经过softmax之前的) | |
# 也叫做logits | |
predictions = outputs[0] | |
# 我们需要预测下一个单词,所以是使用predictions第一个batch,最后一个词的logits去计算 | |
# predicted_index = 582,通过计算最大得分的索引得到的 | |
predicted_index = torch.argmax(predictions[0, -1, :]).item() | |
# 反向解码为我们需要的文本 | |
predicted_text = tokenizer.decode(indexed_tokens + [predicted_index]) | |
# predicted_text = tokenizer.decode([predicted_index]) | |
# 解码后的文本:'Who was Jim Henson? Jim Henson was a man' | |
# 成功预测出单词 'man' | |
return predicted_text | |
# 关键词预测 生成文本 | |
def loopGen(prompts): | |
text = prompts | |
total = 1 | |
while text[-1] != "." and total < 20: | |
text = sampleGen(text) | |
print("Index %s: %s" % (total, text)) | |
total = total + 1 | |
return text, total | |
# 贪心搜索 生成文本 | |
def greedySearch(prompts): | |
input_ids = tokenizer(prompts, return_tensors='pt').input_ids | |
# generate the result with greedy search | |
output = model.generate(input_ids, max_length=128) | |
text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return text, 1 | |
# 随机方法 生成文本 | |
def randomSearch(prompts): | |
input_ids = tokenizer(prompts, return_tensors='pt').input_ids | |
# generate the result with random search | |
torch.manual_seed(0.) | |
output = model.generate(input_ids, do_sample=True, max_length=128, top_p=0.95, top_k=0) | |
text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return text, 1 | |
# 对比搜索 生成文本 | |
def contrastiveSearch(prompts): | |
input_ids = tokenizer(prompts, return_tensors='pt').input_ids | |
# generate the result with contrastive search | |
output = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=512) | |
text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return text, 1 | |
def predict(searchType, prompts='Who was Jim Henson ? Jim Henson was a'): | |
if searchType == "贪心搜索": | |
return greedySearch(prompts) | |
elif searchType == "随机方法": | |
return randomSearch(prompts) | |
elif searchType == "对比搜索": | |
return contrastiveSearch(prompts) | |
else: | |
return loopGen(prompts) | |
title = "GPT2 large" | |
searchMapping = ['关键词预测', '贪心搜索', '随机方法', '对比搜索'] | |
description = """ | |
本例为使用GPT2模型的简单推测语句DEMO,输入前面的句子,推测出后面的句子。 | |
使用原始模型,未经过微调。只支持英文输入输出。 | |
""" | |
examples = [ | |
[None, "DeepMind Company is", None], | |
[None, "Who was Jim Henson ? Jim Henson was a", None], | |
[None, "China is", None] | |
] | |
article = """ | |
## 文章参考 | |
- [在 Transformers 中使用对比搜索生成可媲美人类水平的文本 🤗](https://mp.weixin.qq.com/s/mydQLDlGUzFJuNBCIYc3CA) | |
""" | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Radio(label="搜索方法", choices=searchMapping, value="关键词预测"), | |
gr.Text(label="输入前置语句"), | |
], | |
outputs=[ | |
gr.Text(label="生成文本"), | |
gr.Text(label="循环次数"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch() |