rcell's picture
init
5195a87
raw
history blame
2.49 kB
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import logging
numba_logger = logging.getLogger('numba')
numba_logger.setLevel(logging.WARNING)
import librosa
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
print(text_norm.shape)
return text_norm
hps = utils.get_hparams_from_file("configs/ljs_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
import numpy as np
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
_ = utils.load_checkpoint("G_88000.pth", net_g, None)
def vc_fn(input_audio):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 30:
return "Error: Audio is too long", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
print(source.shape)
with torch.inference_mode():
units = hubert.units(source)
stn_tst = torch.FloatTensor(units.squeeze(0))
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=0.1, noise_scale_w=0.1, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
vc_submit = gr.Button("Convert", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [ vc_input3], [vc_output1, vc_output2])
app.launch()