Spaces:
Running
Running
File size: 4,119 Bytes
40eb285 d950ac3 40eb285 d950ac3 cb3140f d950ac3 7bbcb75 d950ac3 7bbcb75 d950ac3 fe5b963 d950ac3 fe5b963 cb3140f fe5b963 cb3140f d950ac3 cb3140f fe5b963 d950ac3 cb3140f fe5b963 cb3140f fe5b963 cb3140f fe5b963 d950ac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence, cleaned_text_to_sequence
from text.cleaners import japanese_cleaners
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
# print(text_norm.shape)
return text_norm
hps_ms = utils.get_hparams_from_file("configs/japanese_base.json")
hps = utils.get_hparams_from_file("configs/japanese_base.json")
net_g_ms = SynthesizerTrn(
len(symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
def jtts(spkid, text):
sid = torch.LongTensor([spkid]) # speaker identity
stn_tst = get_text(text, hps_ms)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
# print(stn_tst.size())
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
0, 0].data.float().numpy()
return
_ = utils.load_checkpoint("output.pth", net_g_ms, None)
def tts(text):
if len(text) > 150:
return "Error: Text is too long", None
sid = torch.LongTensor([2]) # speaker identity
stn_tst = get_text(text, hps_ms)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
# print(stn_tst.size())
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
def clean_text(text):
return japanese_cleaners(text)
def generate_from_clean(text):
if len(text) > 300:
return "Error: Text is too long", None
sid = torch.LongTensor([2]) # speaker identity
text_norm = cleaned_text_to_sequence(text)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
stn_tst = torch.LongTensor(text_norm)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
tts_input1 = gr.TextArea(label="Text in Japanese (150 words limitation)", value="こんにちは。")
# tts_input2 = gr.Dropdown(label="Speaker", choices=hps.speakers, type="index", value=hps.speakers[0])
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Message")
tts_output2 = gr.Audio(label="Output")
tts_submit.click(tts, [tts_input1], [tts_output1, tts_output2])
with gr.TabItem("Advanced"):
tts_input3 = gr.TextArea(label="Text in Japanese", value="こんにちは。")
tts_s1 = gr.Button("Clean", variant="primary")
tts_input4 = gr.TextArea(label="Cleaned Text (300 words limitation)", value="ko↑Nniʧiwa.")
tts_s2 = gr.Button("Generate", variant="primary")
message = gr.Textbox(label="Message")
tts_o = gr.Audio(label="Output")
tts_s1.click(clean_text, [tts_input3], [ tts_input4])
tts_s2.click(generate_from_clean, [tts_input4], [message, tts_o])
app.launch()
|