Spaces:
Runtime error
Runtime error
Ved Gupta
commited on
Commit
·
77b60c4
1
Parent(s):
5ec91c1
initial commit
Browse files- Pipfile +11 -0
- image-colorization-using-gan-main.ipynb +0 -0
- main.py +65 -0
- model/Discriminator.py +37 -0
- model/Generator.py +73 -0
- model/__init__.py +87 -0
- model/weights.py +39 -0
- utility/__init__.py +1 -0
- utility/helper.py +181 -0
Pipfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
|
8 |
+
[dev-packages]
|
9 |
+
|
10 |
+
[requires]
|
11 |
+
python_version = "3.10"
|
image-colorization-using-gan-main.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
main.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import glob
|
7 |
+
import time
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from pathlib import Path
|
11 |
+
from tqdm.notebook import tqdm
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from skimage.color import rgb2lab, lab2rgb
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn, optim
|
17 |
+
from torchvision import transforms
|
18 |
+
from torchvision.utils import make_grid
|
19 |
+
from torch.utils.data import Dataset, DataLoader
|
20 |
+
|
21 |
+
|
22 |
+
from utility import *
|
23 |
+
from model import *
|
24 |
+
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
model_path = "model/ImageColorizationModel.pth"
|
28 |
+
|
29 |
+
|
30 |
+
model = None
|
31 |
+
if not os.path.exists(model_path) :
|
32 |
+
print("Model not find")
|
33 |
+
download_from_drive()
|
34 |
+
print("Model Downloaded")
|
35 |
+
else:
|
36 |
+
model = load_model(model_class=MainModel , file_path=model_path)
|
37 |
+
print("Model Loaded")
|
38 |
+
|
39 |
+
def predict_and_return_image(image):
|
40 |
+
data = create_lab_tensors(image)
|
41 |
+
model.net_G.eval()
|
42 |
+
with torch.no_grad():
|
43 |
+
model.setup_input(data)
|
44 |
+
model.forward()
|
45 |
+
fake_color = model.fake_color.detach()
|
46 |
+
L = model.L
|
47 |
+
fake_imgs = lab_to_rgb(L, fake_color)
|
48 |
+
return fake_imgs[0]
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
title = "Black&White to Color image"
|
55 |
+
description = "Transforming Black & White Image in to colored image. Upload a black and white image to see it colorized by our deep learning model."
|
56 |
+
|
57 |
+
gr.Interface(
|
58 |
+
fn=predict_and_return_image,
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
inputs=[gr.Image(label="Gray Scale Image")],
|
62 |
+
outputs=[
|
63 |
+
gr.Image(label="Predicted Colored Image")
|
64 |
+
],
|
65 |
+
).launch(share=True, debug=True)
|
model/Discriminator.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from skimage.color import rgb2lab, lab2rgb
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn, optim
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
class PatchDiscriminator(nn.Module):
|
20 |
+
def __init__(self, input_c, num_filters=64, n_down=3):
|
21 |
+
super().__init__()
|
22 |
+
model = [self.get_layers(input_c, num_filters, norm=False)]
|
23 |
+
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
|
24 |
+
for i in range(n_down)] # the 'if' statement is taking care of not using
|
25 |
+
# stride of 2 for the last block in this loop
|
26 |
+
model += [self.get_layers(num_filters * 2 ** n_down, 1, s=1, norm=False, act=False)] # Make sure to not use normalization or
|
27 |
+
# activation for the last layer of the model
|
28 |
+
self.model = nn.Sequential(*model)
|
29 |
+
|
30 |
+
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True): # when needing to make some repeatitive blocks of layers,
|
31 |
+
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)] # it's always helpful to make a separate method for that purpose
|
32 |
+
if norm: layers += [nn.BatchNorm2d(nf)]
|
33 |
+
if act: layers += [nn.LeakyReLU(0.2, True)]
|
34 |
+
return nn.Sequential(*layers)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return self.model(x)
|
model/Generator.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from skimage.color import rgb2lab, lab2rgb
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn, optim
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
class UnetBlock(nn.Module):
|
20 |
+
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
|
21 |
+
innermost=False, outermost=False):
|
22 |
+
super().__init__()
|
23 |
+
self.outermost = outermost
|
24 |
+
if input_c is None: input_c = nf
|
25 |
+
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
|
26 |
+
stride=2, padding=1, bias=False)
|
27 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
28 |
+
downnorm = nn.BatchNorm2d(ni)
|
29 |
+
uprelu = nn.ReLU(True)
|
30 |
+
upnorm = nn.BatchNorm2d(nf)
|
31 |
+
|
32 |
+
if outermost:
|
33 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
34 |
+
stride=2, padding=1)
|
35 |
+
down = [downconv]
|
36 |
+
up = [uprelu, upconv, nn.Tanh()]
|
37 |
+
model = down + [submodule] + up
|
38 |
+
elif innermost:
|
39 |
+
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
|
40 |
+
stride=2, padding=1, bias=False)
|
41 |
+
down = [downrelu, downconv]
|
42 |
+
up = [uprelu, upconv, upnorm]
|
43 |
+
model = down + up
|
44 |
+
else:
|
45 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
46 |
+
stride=2, padding=1, bias=False)
|
47 |
+
down = [downrelu, downconv, downnorm]
|
48 |
+
up = [uprelu, upconv, upnorm]
|
49 |
+
if dropout: up += [nn.Dropout(0.5)]
|
50 |
+
model = down + [submodule] + up
|
51 |
+
self.model = nn.Sequential(*model)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
if self.outermost:
|
55 |
+
return self.model(x)
|
56 |
+
else:
|
57 |
+
return torch.cat([x, self.model(x)], 1)
|
58 |
+
|
59 |
+
|
60 |
+
class Unet(nn.Module):
|
61 |
+
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
|
62 |
+
super().__init__()
|
63 |
+
unet_block = UnetBlock(num_filters * 8, num_filters * 8, innermost=True)
|
64 |
+
for _ in range(n_down - 5):
|
65 |
+
unet_block = UnetBlock(num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
|
66 |
+
out_filters = num_filters * 8
|
67 |
+
for _ in range(3):
|
68 |
+
unet_block = UnetBlock(out_filters // 2, out_filters, submodule=unet_block)
|
69 |
+
out_filters //= 2
|
70 |
+
self.model = UnetBlock(output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return self.model(x)
|
model/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from skimage.color import rgb2lab, lab2rgb
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn, optim
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
|
17 |
+
from .Generator import UnetBlock , Unet
|
18 |
+
from .Discriminator import PatchDiscriminator
|
19 |
+
from .weights import init_weights
|
20 |
+
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
def init_model(model, device):
|
24 |
+
model = model.to(device)
|
25 |
+
model = init_weights(model)
|
26 |
+
return model
|
27 |
+
|
28 |
+
class MainModel(nn.Module):
|
29 |
+
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
|
30 |
+
beta1=0.5, beta2=0.999, lambda_L1=100.):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
self.lambda_L1 = lambda_L1
|
35 |
+
|
36 |
+
if net_G is None:
|
37 |
+
self.net_G = init_model(Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
|
38 |
+
else:
|
39 |
+
self.net_G = net_G.to(self.device)
|
40 |
+
self.net_D = init_model(PatchDiscriminator(input_c=3, n_down=3, num_filters=64), self.device)
|
41 |
+
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
|
42 |
+
self.L1criterion = nn.L1Loss()
|
43 |
+
self.opt_G = optim.Adam(self.net_G.parameters(), lr=lr_G, betas=(beta1, beta2))
|
44 |
+
self.opt_D = optim.Adam(self.net_D.parameters(), lr=lr_D, betas=(beta1, beta2))
|
45 |
+
|
46 |
+
def set_requires_grad(self, model, requires_grad=True):
|
47 |
+
for p in model.parameters():
|
48 |
+
p.requires_grad = requires_grad
|
49 |
+
|
50 |
+
def setup_input(self, data):
|
51 |
+
self.L = data['L'].to(self.device)
|
52 |
+
self.ab = data['ab'].to(self.device)
|
53 |
+
|
54 |
+
def forward(self):
|
55 |
+
self.fake_color = self.net_G(self.L)
|
56 |
+
|
57 |
+
def backward_D(self):
|
58 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
59 |
+
fake_preds = self.net_D(fake_image.detach())
|
60 |
+
self.loss_D_fake = self.GANcriterion(fake_preds, False)
|
61 |
+
real_image = torch.cat([self.L, self.ab], dim=1)
|
62 |
+
real_preds = self.net_D(real_image)
|
63 |
+
self.loss_D_real = self.GANcriterion(real_preds, True)
|
64 |
+
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
|
65 |
+
self.loss_D.backward()
|
66 |
+
|
67 |
+
def backward_G(self):
|
68 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
69 |
+
fake_preds = self.net_D(fake_image)
|
70 |
+
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
|
71 |
+
self.loss_G_L1 = self.L1criterion(self.fake_color, self.ab) * self.lambda_L1
|
72 |
+
self.loss_G = self.loss_G_GAN + self.loss_G_L1
|
73 |
+
self.loss_G.backward()
|
74 |
+
|
75 |
+
def optimize(self):
|
76 |
+
self.forward()
|
77 |
+
self.net_D.train()
|
78 |
+
self.set_requires_grad(self.net_D, True)
|
79 |
+
self.opt_D.zero_grad()
|
80 |
+
self.backward_D()
|
81 |
+
self.opt_D.step()
|
82 |
+
|
83 |
+
self.net_G.train()
|
84 |
+
self.set_requires_grad(self.net_D, False)
|
85 |
+
self.opt_G.zero_grad()
|
86 |
+
self.backward_G()
|
87 |
+
self.opt_G.step()
|
model/weights.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from skimage.color import rgb2lab, lab2rgb
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn, optim
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
def init_weights(net, init='norm', gain=0.02):
|
20 |
+
|
21 |
+
def init_func(m):
|
22 |
+
classname = m.__class__.__name__
|
23 |
+
if hasattr(m, 'weight') and 'Conv' in classname:
|
24 |
+
if init == 'norm':
|
25 |
+
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
|
26 |
+
elif init == 'xavier':
|
27 |
+
nn.init.xavier_normal_(m.weight.data, gain=gain)
|
28 |
+
elif init == 'kaiming':
|
29 |
+
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
30 |
+
|
31 |
+
if hasattr(m, 'bias') and m.bias is not None:
|
32 |
+
nn.init.constant_(m.bias.data, 0.0)
|
33 |
+
elif 'BatchNorm2d' in classname:
|
34 |
+
nn.init.normal_(m.weight.data, 1., gain)
|
35 |
+
nn.init.constant_(m.bias.data, 0.)
|
36 |
+
|
37 |
+
net.apply(init_func)
|
38 |
+
print(f"model initialized with {init} initialization")
|
39 |
+
return net
|
utility/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .helper import *
|
utility/helper.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from pathlib import Path
|
7 |
+
from tqdm.notebook import tqdm
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from skimage.color import rgb2lab, lab2rgb
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn, optim
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
import requests
|
20 |
+
import gdown
|
21 |
+
|
22 |
+
def download_from_drive():
|
23 |
+
url = "https://drive.google.com/uc?id=1EhuMET76c02VFyRW8Pie7BwNCDHmQiad"
|
24 |
+
try:
|
25 |
+
output = "model/ImageColorizationModel.pth"
|
26 |
+
gdown.download(url, output, quiet=False)
|
27 |
+
return True
|
28 |
+
except:
|
29 |
+
print("Error Occured in Downloading model from Gdrive")
|
30 |
+
return False
|
31 |
+
|
32 |
+
|
33 |
+
class AverageMeter:
|
34 |
+
def __init__(self):
|
35 |
+
self.reset()
|
36 |
+
|
37 |
+
def reset(self):
|
38 |
+
self.count, self.avg, self.sum = [0.] * 3
|
39 |
+
|
40 |
+
def update(self, val, count=1):
|
41 |
+
self.count += count
|
42 |
+
self.sum += count * val
|
43 |
+
self.avg = self.sum / self.count
|
44 |
+
|
45 |
+
def create_loss_meters():
|
46 |
+
loss_D_fake = AverageMeter()
|
47 |
+
loss_D_real = AverageMeter()
|
48 |
+
loss_D = AverageMeter()
|
49 |
+
loss_G_GAN = AverageMeter()
|
50 |
+
loss_G_L1 = AverageMeter()
|
51 |
+
loss_G = AverageMeter()
|
52 |
+
|
53 |
+
return {'loss_D_fake': loss_D_fake,
|
54 |
+
'loss_D_real': loss_D_real,
|
55 |
+
'loss_D': loss_D,
|
56 |
+
'loss_G_GAN': loss_G_GAN,
|
57 |
+
'loss_G_L1': loss_G_L1,
|
58 |
+
'loss_G': loss_G}
|
59 |
+
|
60 |
+
def update_losses(model, loss_meter_dict, count):
|
61 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
62 |
+
loss = getattr(model, loss_name)
|
63 |
+
loss_meter.update(loss.item(), count=count)
|
64 |
+
|
65 |
+
def lab_to_rgb(L, ab):
|
66 |
+
"""
|
67 |
+
Takes a batch of images
|
68 |
+
"""
|
69 |
+
|
70 |
+
L = (L + 1.) * 50.
|
71 |
+
ab = ab * 110.
|
72 |
+
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
73 |
+
rgb_imgs = []
|
74 |
+
for img in Lab:
|
75 |
+
img_rgb = lab2rgb(img)
|
76 |
+
rgb_imgs.append(img_rgb)
|
77 |
+
return np.stack(rgb_imgs, axis=0)
|
78 |
+
|
79 |
+
def visualize(model, data, save=True):
|
80 |
+
model.net_G.eval()
|
81 |
+
with torch.no_grad():
|
82 |
+
model.setup_input(data)
|
83 |
+
model.forward()
|
84 |
+
model.net_G.train()
|
85 |
+
fake_color = model.fake_color.detach()
|
86 |
+
real_color = model.ab
|
87 |
+
L = model.L
|
88 |
+
fake_imgs = lab_to_rgb(L, fake_color)
|
89 |
+
real_imgs = lab_to_rgb(L, real_color)
|
90 |
+
fig = plt.figure(figsize=(15, 8))
|
91 |
+
for i in range(5):
|
92 |
+
ax = plt.subplot(3, 5, i + 1)
|
93 |
+
ax.imshow(L[i][0].cpu(), cmap='gray')
|
94 |
+
ax.axis("off")
|
95 |
+
ax = plt.subplot(3, 5, i + 1 + 5)
|
96 |
+
ax.imshow(fake_imgs[i])
|
97 |
+
ax.axis("off")
|
98 |
+
ax = plt.subplot(3, 5, i + 1 + 10)
|
99 |
+
ax.imshow(real_imgs[i])
|
100 |
+
ax.axis("off")
|
101 |
+
plt.show()
|
102 |
+
if save:
|
103 |
+
fig.savefig(f"colorization_{time.time()}.png")
|
104 |
+
|
105 |
+
def log_results(loss_meter_dict):
|
106 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
107 |
+
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
108 |
+
|
109 |
+
def create_lab_tensors(image):
|
110 |
+
"""
|
111 |
+
This function receives an image path or a direct image input and creates a dictionary of L and ab tensors.
|
112 |
+
Args:
|
113 |
+
- image: either a path to the image file or a direct image input.
|
114 |
+
Returns:
|
115 |
+
- lab_dict: dictionary containing the L and ab tensors.
|
116 |
+
"""
|
117 |
+
if isinstance(image, str):
|
118 |
+
# Open the image and convert it to RGB format
|
119 |
+
img = Image.open(image).convert('RGB')
|
120 |
+
else:
|
121 |
+
img = image.convert('RGB')
|
122 |
+
|
123 |
+
custom_transforms = transforms.Compose([
|
124 |
+
transforms.Resize((SIZE, SIZE), Image.BICUBIC),
|
125 |
+
transforms.RandomHorizontalFlip(), # A little data augmentation!
|
126 |
+
])
|
127 |
+
img = custom_transforms(img)
|
128 |
+
img = np.array(img)
|
129 |
+
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
130 |
+
img_lab = transforms.ToTensor()(img_lab)
|
131 |
+
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
132 |
+
L = L.unsqueeze(0)
|
133 |
+
ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1
|
134 |
+
return {'L': L, 'ab': ab}
|
135 |
+
|
136 |
+
|
137 |
+
def predict_and_visualize_single_image(model, data, save=True):
|
138 |
+
model.net_G.eval()
|
139 |
+
with torch.no_grad():
|
140 |
+
model.setup_input(data)
|
141 |
+
model.forward()
|
142 |
+
fake_color = model.fake_color.detach()
|
143 |
+
L = model.L
|
144 |
+
fake_imgs = lab_to_rgb(L, fake_color)
|
145 |
+
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
|
146 |
+
axs[0].imshow(L[0][0].cpu(), cmap='gray')
|
147 |
+
axs[0].set_title("Grey Image")
|
148 |
+
axs[0].axis('off')
|
149 |
+
|
150 |
+
axs[1].imshow(fake_imgs[0])
|
151 |
+
axs[1].set_title("Colored Image")
|
152 |
+
axs[1].axis('off')
|
153 |
+
plt.show()
|
154 |
+
if save:
|
155 |
+
fig.savefig(f"colorization_{time.time()}.png")
|
156 |
+
|
157 |
+
def predict_color(model , image , save=False):
|
158 |
+
"""
|
159 |
+
This function receives an image path or a direct image input and creates a dictionary of L and ab tensors.
|
160 |
+
Args:
|
161 |
+
- model : Pytorch Gray Scale to Colorization Model
|
162 |
+
- image: either a path to the image file or a direct image input.
|
163 |
+
"""
|
164 |
+
data = create_lab_tensors(image)
|
165 |
+
predict_and_visualize_single_image(model, data, save)
|
166 |
+
|
167 |
+
|
168 |
+
def load_model(model_class, file_path):
|
169 |
+
"""
|
170 |
+
Load PyTorch model from file.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
model_class (torch.nn.Module): PyTorch model class to load.
|
174 |
+
file_path (str): File path to load the model from.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
model (torch.nn.Module): Loaded PyTorch model.
|
178 |
+
"""
|
179 |
+
model = model_class()
|
180 |
+
model.load_state_dict(torch.load(file_path))
|
181 |
+
return model
|