File size: 2,644 Bytes
6e92463 a625565 6e92463 a625565 6e92463 9eab909 6e92463 a625565 6e92463 a625565 6e92463 a625565 6e92463 3f6e15f 219dbcc 3f6e15f 6e92463 3f6e15f 9eab909 21db336 9eab909 21db336 2530a47 9eab909 3f6e15f 9ae9e92 2530a47 6e92463 3f6e15f 219dbcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import numpy as np
import cv2
import onnxruntime
import gradio as gr
def pre_process(img: np.array) -> np.array:
# H, W, C -> C, H, W
img = np.transpose(img[:, :, 0:3], (2, 0, 1))
# C, H, W -> 1, C, H, W
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def post_process(img: np.array) -> np.array:
# 1, C, H, W -> C, H, W
img = np.squeeze(img)
# C, H, W -> H, W, C
img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
return img
def inference(model_path: str, img_array: np.array) -> np.array:
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
ort_session = onnxruntime.InferenceSession(model_path, options)
ort_inputs = {ort_session.get_inputs()[0].name: img_array}
ort_outs = ort_session.run(None, ort_inputs)
return ort_outs[0]
def convert_pil_to_cv2(image):
# pil_image = image.convert("RGB")
open_cv_image = np.array(image)
# RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def upscale(image, model):
model_path = f"models/{model}.ort"
img = convert_pil_to_cv2(image)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if img.shape[2] == 4:
alpha = img[:, :, 3] # GRAY
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
img = img[:, :, 0:3] # BGR
image_output = post_process(inference(model_path, pre_process(img))) # BGR
image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
image_output[:, :, 3] = alpha_output
elif img.shape[2] == 3:
image_output = post_process(inference(model_path, pre_process(img))) # BGR
return image_output
css = ".output-image, .input-image, .image-preview {height: 480px !important} "
model_choices = ["modelx2", "modelx2 25 JXL", "modelx4", "minecraft_modelx4"]
gr.Interface(
fn=upscale,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Radio(
model_choices,
type="value",
value=None,
label="Choose Upscaler",
),
],
outputs="image",
title="Image Upscaling",
description="Model: [Anchor-based Plain Net for Mobile Image Super-Resolution](https://arxiv.org/abs/2105.09750). Repository: [SR Mobile PyTorch](https://github.com/w11wo/sr_mobile_pytorch)",
allow_flagging="never",
css=css,
).launch()
|