Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,298 +1,77 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
-
import sys
|
4 |
-
# import OpenGL.GL as gl
|
5 |
-
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
6 |
-
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
|
7 |
-
os.system('pip install /home/user/app/pyrender')
|
8 |
-
sys.path.append('/home/user/app/pyrender')
|
9 |
-
# os.system(r"apt-get install -y python-opengl libosmesa6")
|
10 |
-
sys.path.append(os.getcwd())
|
11 |
-
# os.system(r"cd mesh-master")
|
12 |
-
# os.system(r"tar -jxvf boost_1_79_0.tar.bz2")
|
13 |
-
# os.system(r"mv boost_1_79_0 boost")
|
14 |
-
# os.system(r"CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/home/user/app/boost")
|
15 |
-
# os.system(r"export LIBRARY_PATH=$LIBRARY_PATH:/home/user/app/boost/stage/lib")
|
16 |
-
# os.system(r"apt-get update")
|
17 |
-
# os.system(r"apt-get install sudo")
|
18 |
-
#
|
19 |
-
# os.system(r"apt-get install libboost-dev")
|
20 |
-
# # os.system(r"sudo apt-get install gcc")
|
21 |
-
# # os.system(r"sudo apt-get install g++")
|
22 |
-
# os.system(r"make -C ./mesh-master all")
|
23 |
-
# os.system(r"cd ..")
|
24 |
-
# os.system("pip install --no-deps --verbose --no-cache-dir /home/user/app/mesh-fix-MSVC_compilation")
|
25 |
|
26 |
-
from transformers import Wav2Vec2Processor
|
27 |
|
28 |
-
import numpy as np
|
29 |
-
import json
|
30 |
-
import smplx as smpl
|
31 |
|
32 |
-
from nets import *
|
33 |
-
from trainer.options import parse_args
|
34 |
-
from data_utils import torch_data
|
35 |
-
from trainer.config import load_JsonConfig
|
36 |
|
37 |
-
import torch
|
38 |
-
import torch.nn as nn
|
39 |
-
import torch.nn.functional as F
|
40 |
-
from torch.utils import data
|
41 |
-
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
|
42 |
-
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
|
43 |
-
from visualise.rendering import RenderTool
|
44 |
|
45 |
-
global device
|
46 |
-
is_cuda = torch.cuda.is_available()
|
47 |
-
device = torch.device("cuda" if is_cuda else "cpu")
|
48 |
|
49 |
|
50 |
-
def init_model(model_name, model_path, args, config):
|
51 |
-
if model_name == 's2g_face':
|
52 |
-
generator = s2g_face(
|
53 |
-
args,
|
54 |
-
config,
|
55 |
-
)
|
56 |
-
elif model_name == 's2g_body_vq':
|
57 |
-
generator = s2g_body_vq(
|
58 |
-
args,
|
59 |
-
config,
|
60 |
-
)
|
61 |
-
elif model_name == 's2g_body_pixel':
|
62 |
-
generator = s2g_body_pixel(
|
63 |
-
args,
|
64 |
-
config,
|
65 |
-
)
|
66 |
-
elif model_name == 's2g_LS3DCG':
|
67 |
-
generator = LS3DCG(
|
68 |
-
args,
|
69 |
-
config,
|
70 |
-
)
|
71 |
-
else:
|
72 |
-
raise NotImplementedError
|
73 |
|
74 |
-
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
|
75 |
-
if model_name == 'smplx_S2G':
|
76 |
-
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
|
77 |
|
78 |
-
elif 'generator' in list(model_ckpt.keys()):
|
79 |
-
generator.load_state_dict(model_ckpt['generator'])
|
80 |
-
else:
|
81 |
-
model_ckpt = {'generator': model_ckpt}
|
82 |
-
generator.load_state_dict(model_ckpt)
|
83 |
|
84 |
-
return generator
|
85 |
|
86 |
|
87 |
-
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
|
88 |
-
vertices_list = []
|
89 |
-
poses_list = []
|
90 |
-
expression = torch.zeros([1, 100])
|
91 |
|
92 |
-
for i in result_list:
|
93 |
-
vertices = []
|
94 |
-
poses = []
|
95 |
-
for j in range(i.shape[0]):
|
96 |
-
output = smplx_model(betas=betas,
|
97 |
-
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
|
98 |
-
jaw_pose=i[j][0:3].unsqueeze_(dim=0),
|
99 |
-
leye_pose=i[j][3:6].unsqueeze_(dim=0),
|
100 |
-
reye_pose=i[j][6:9].unsqueeze_(dim=0),
|
101 |
-
global_orient=i[j][9:12].unsqueeze_(dim=0),
|
102 |
-
body_pose=i[j][12:75].unsqueeze_(dim=0),
|
103 |
-
left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
|
104 |
-
right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
|
105 |
-
return_verts=True)
|
106 |
-
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
|
107 |
-
# pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1)
|
108 |
-
pose = output.body_pose
|
109 |
-
poses.append(pose.detach().cpu())
|
110 |
-
vertices = np.asarray(vertices)
|
111 |
-
vertices_list.append(vertices)
|
112 |
-
poses = torch.cat(poses, dim=0)
|
113 |
-
poses_list.append(poses)
|
114 |
-
if require_pose:
|
115 |
-
return vertices_list, poses_list
|
116 |
-
else:
|
117 |
-
return vertices_list, None
|
118 |
|
119 |
|
120 |
-
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
|
121 |
|
122 |
-
parser = parse_args()
|
123 |
-
args = parser.parse_args()
|
124 |
-
args.gpu = device
|
125 |
|
126 |
-
RUN_MODE = "local"
|
127 |
-
if RUN_MODE != "local":
|
128 |
-
os.system("wget -P experiments/2022-10-15-smplx_S2G-face-3d/ "
|
129 |
-
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-15-smplx_S2G-face-3d/ckpt-99.pth")
|
130 |
-
os.system("wget -P experiments/2022-10-31-smplx_S2G-body-vq-3d/ "
|
131 |
-
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-31-smplx_S2G-body-vq-3d/ckpt-99.pth")
|
132 |
-
os.system("wget -P experiments/2022-11-02-smplx_S2G-body-pixel-3d/ "
|
133 |
-
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-11-02-smplx_S2G-body-pixel-3d/ckpt-99.pth")
|
134 |
-
os.system("wget -P visualise/smplx/ "
|
135 |
-
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/smplx/SMPLX_NEUTRAL.npz")
|
136 |
|
137 |
-
config = load_JsonConfig("config/body_pixel.json")
|
138 |
|
139 |
-
face_model_name = args.face_model_name
|
140 |
-
face_model_path = args.face_model_path
|
141 |
-
body_model_name = args.body_model_name
|
142 |
-
body_model_path = args.body_model_path
|
143 |
-
smplx_path = './visualise/'
|
144 |
|
145 |
-
os.environ['smplx_npz_path'] = config.smplx_npz_path
|
146 |
-
os.environ['extra_joint_path'] = config.extra_joint_path
|
147 |
-
os.environ['j14_regressor_path'] = config.j14_regressor_path
|
148 |
|
149 |
-
print('init model...')
|
150 |
-
g_body = init_model(body_model_name, body_model_path, args, config)
|
151 |
-
generator2 = None
|
152 |
-
g_face = init_model(face_model_name, face_model_path, args, config)
|
153 |
|
154 |
-
print('init smlpx model...')
|
155 |
-
dtype = torch.float64
|
156 |
-
model_params = dict(model_path=smplx_path,
|
157 |
-
model_type='smplx',
|
158 |
-
create_global_orient=True,
|
159 |
-
create_body_pose=True,
|
160 |
-
create_betas=True,
|
161 |
-
num_betas=300,
|
162 |
-
create_left_hand_pose=True,
|
163 |
-
create_right_hand_pose=True,
|
164 |
-
use_pca=False,
|
165 |
-
flat_hand_mean=False,
|
166 |
-
create_expression=True,
|
167 |
-
num_expression_coeffs=100,
|
168 |
-
num_pca_comps=12,
|
169 |
-
create_jaw_pose=True,
|
170 |
-
create_leye_pose=True,
|
171 |
-
create_reye_pose=True,
|
172 |
-
create_transl=False,
|
173 |
-
# gender='ne',
|
174 |
-
dtype=dtype, )
|
175 |
-
smplx_model = smpl.create(**model_params).to(device)
|
176 |
-
print('init rendertool...')
|
177 |
-
rendertool = RenderTool('visualise/video/' + config.Log.name)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
id
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
initial_pose=None,
|
214 |
-
norm_stats=None,
|
215 |
-
w_pre=False,
|
216 |
-
# id=id,
|
217 |
-
frame=None,
|
218 |
-
am=am,
|
219 |
-
am_sr=am_sr
|
220 |
-
)
|
221 |
-
pred_face = torch.tensor(pred_face).squeeze().to(device)
|
222 |
-
# pred_face = torch.zeros([gt.shape[0], 105])
|
223 |
-
|
224 |
-
if config.Data.pose.convert_to_6d:
|
225 |
-
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
|
226 |
-
pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
|
227 |
-
pred_face = pred_face[:, 6:]
|
228 |
-
else:
|
229 |
-
pred_jaw = pred_face[:, :3]
|
230 |
-
pred_face = pred_face[:, 3:]
|
231 |
-
|
232 |
-
id = torch.tensor([id], device=device)
|
233 |
-
|
234 |
-
for i in range(num_sample):
|
235 |
-
pred_res = g_body.infer_on_audio(cur_wav_file,
|
236 |
-
initial_pose=None,
|
237 |
-
norm_stats=None,
|
238 |
-
txgfile=None,
|
239 |
-
id=id,
|
240 |
-
var=None,
|
241 |
-
fps=30,
|
242 |
-
w_pre=False
|
243 |
-
)
|
244 |
-
pred = torch.tensor(pred_res).squeeze().to(device)
|
245 |
-
|
246 |
-
if pred.shape[0] < pred_face.shape[0]:
|
247 |
-
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
|
248 |
-
pred = torch.cat([pred, repeat_frame], dim=0)
|
249 |
else:
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
pred = part2full(pred, stand)
|
267 |
-
if face:
|
268 |
-
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
|
269 |
-
# result_list[0] = poses2pred(result_list[0], stand)
|
270 |
-
# if gt_0 is None:
|
271 |
-
# gt_0 = gt
|
272 |
-
# pred = pred2poses(pred, gt_0)
|
273 |
-
# result_list[0] = poses2poses(result_list[0], gt_0)
|
274 |
-
|
275 |
-
result_list.append(pred)
|
276 |
-
|
277 |
-
|
278 |
-
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
|
279 |
-
|
280 |
-
result_list = [res.to('cpu') for res in result_list]
|
281 |
-
dict = np.concatenate(result_list[:], axis=0)
|
282 |
-
|
283 |
-
rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
|
284 |
-
return "result.mp4"
|
285 |
-
|
286 |
-
def main():
|
287 |
-
|
288 |
-
iface = gr.Interface(fn=infer, inputs=["audio",
|
289 |
-
gr.Radio(["Oliver", "Chemistry", "Seth", "Conan"]),
|
290 |
-
gr.Radio(["Stand", "Sit", "Only Face"]),
|
291 |
-
],
|
292 |
-
outputs="video",
|
293 |
-
examples=[[os.path.join(os.path.dirname(__file__), "demo_audio/style.wav"), "Oliver", "Sit"]])
|
294 |
-
iface.launch(debug=True)
|
295 |
-
|
296 |
-
|
297 |
-
if __name__ == '__main__':
|
298 |
-
main()
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
|
|
19 |
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def run_talkshow_model(audio_file):
|
28 |
+
# Path to the TalkSHOW demo script
|
29 |
+
demo_script = 'scripts/demo.py'
|
30 |
+
|
31 |
+
# Configuration and model parameters
|
32 |
+
config_file = './config/LS3DCG.json'
|
33 |
+
body_model_name = 's2g_LS3DCG'
|
34 |
+
body_model_path = 'experiments/2022-10-19-smplx_S2G-LS3DCG/ckpt-99.pth'
|
35 |
+
|
36 |
+
# Path of the uploaded audio file
|
37 |
+
audio_file_path = audio_file
|
38 |
+
|
39 |
+
# Path where the output .mp4 video will be saved
|
40 |
+
output_video_path = './output_video/result.mp4'
|
41 |
+
|
42 |
+
# Run the demo.py script with the necessary arguments
|
43 |
+
command = [
|
44 |
+
'python', demo_script,
|
45 |
+
'--config_file', config_file,
|
46 |
+
'--infer',
|
47 |
+
'--audio_file', audio_file_path,
|
48 |
+
'--body_model_name', body_model_name,
|
49 |
+
'--body_model_path', body_model_path,
|
50 |
+
'--id', '0',
|
51 |
+
'--output', output_video_path # Assuming demo.py has an argument to specify output
|
52 |
+
]
|
53 |
+
|
54 |
+
try:
|
55 |
+
# Run the subprocess and capture output
|
56 |
+
subprocess.run(command, check=True, capture_output=True, text=True)
|
57 |
+
|
58 |
+
# Check if the .mp4 file is generated
|
59 |
+
if os.path.exists(output_video_path):
|
60 |
+
return output_video_path # Return the path of the generated video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
else:
|
62 |
+
return "Error: Output video not generated."
|
63 |
+
|
64 |
+
except subprocess.CalledProcessError as e:
|
65 |
+
return f"Error running the model: {e.stderr}" # Return the error message
|
66 |
+
|
67 |
+
# Set up the Gradio interface
|
68 |
+
interface = gr.Interface(
|
69 |
+
fn=run_talkshow_model,
|
70 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
71 |
+
outputs=gr.Video(), # Use gr.Video to output the generated .mp4 video
|
72 |
+
title="TalkSHOW: Audio to Mesh"
|
73 |
+
)
|
74 |
+
|
75 |
+
# Launch the interface
|
76 |
+
if __name__ == "__main__":
|
77 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|