Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from PIL import Image | |
import numpy as np | |
def load_model(): | |
controlnet = ControlNetModel.from_pretrained("Kwai-Kolors/Kolors-Virtual-Try-On") | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"Kwai-Kolors/Kolors-Virtual-Try-On", | |
controlnet=controlnet, | |
torch_dtype=torch.float16 | |
) | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
return pipe | |
# Model'i global olarak yükle | |
try: | |
model = load_model() | |
print("Model başarıyla yüklendi!") | |
except Exception as e: | |
print(f"Model yüklenirken hata: {str(e)}") | |
def virtual_try_on(person_image, garment_image): | |
""" | |
Virtual try-on process | |
""" | |
try: | |
# Resimleri uygun formata dönüştür | |
if person_image is None or garment_image is None: | |
return None, "Error: Both images are required" | |
# Model inference | |
output = model( | |
person_image, | |
garment_image, | |
num_inference_steps=30, | |
guidance_scale=7.5 | |
) | |
# Sonuç resmini al | |
result_image = output.images[0] | |
return result_image, "Success" | |
except Exception as e: | |
return None, f"Error: {str(e)}" | |
# Gradio arayüzü | |
demo = gr.Interface( | |
fn=virtual_try_on, | |
inputs=[ | |
gr.Image(type="pil", label="Person Image"), | |
gr.Image(type="pil", label="Garment Image") | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Result"), | |
gr.Text(label="Status") | |
], | |
title="Virtual Try-On", | |
description="Upload a person image and a garment image to see how the garment would look on the person." | |
) | |
if __name__ == "__main__": | |
demo.launch() |