File size: 4,649 Bytes
2267fac
 
 
 
 
 
 
 
d03c698
2267fac
 
 
 
 
 
 
 
 
 
 
168b5c0
2267fac
f0ff987
d03c698
 
 
 
 
 
 
 
2267fac
 
 
 
 
 
168b5c0
 
2267fac
 
 
 
168b5c0
2267fac
168b5c0
2267fac
 
 
 
168b5c0
2267fac
168b5c0
2267fac
 
 
168b5c0
2267fac
 
8dc832e
4281a4a
2267fac
 
3194abe
2267fac
 
 
8dc832e
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
26dfa9a
2267fac
 
 
d03c698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168b5c0
 
 
2267fac
 
d03c698
3194abe
168b5c0
2267fac
 
 
 
168b5c0
 
2267fac
 
 
 
d03c698
168b5c0
 
 
 
 
 
d03c698
 
 
 
 
 
168b5c0
d03c698
168b5c0
2267fac
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from enum import Enum
from functools import lru_cache
import os

import huggingface_hub
import sherpa
import sherpa_onnx


class EnumDecodingMethod(Enum):
    greedy_search = "greedy_search"
    modified_beam_search = "modified_beam_search"


model_map = {
    "Chinese": [
        {
            "repo_id": "csukuangfj/wenet-chinese-model",
            "nn_model_file": "final.zip",
            "tokens_file": "units.txt",
            "sub_folder": ".",
            "loader": "load_sherpa_offline_recognizer",
        },
        {
            "repo_id": "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
            "nn_model_file": "model.int8.onnx",
            "tokens_file": "tokens.txt",
            "sub_folder": ".",
            "loader": "load_sherpa_offline_recognizer_from_paraformer",
        }
    ]
}


def download_model(repo_id: str,
                   nn_model_file: str,
                   tokens_file: str,
                   sub_folder: str,
                   local_model_dir: str,
                   ):

    nn_model_file = huggingface_hub.hf_hub_download(
        repo_id=repo_id,
        filename=nn_model_file,
        subfolder=sub_folder,
        local_dir=local_model_dir,
    )

    tokens_file = huggingface_hub.hf_hub_download(
        repo_id=repo_id,
        filename=tokens_file,
        subfolder=sub_folder,
        local_dir=local_model_dir,
    )
    return nn_model_file, tokens_file


def load_sherpa_offline_recognizer(nn_model_file: str,
                                   tokens_file: str,
                                   sample_rate: int = 16000,
                                   num_active_paths: int = 2,
                                   decoding_method: str = "greedy_search",
                                   num_mel_bins: int = 80,
                                   frame_dither: int = 0,
                                   ):
    feat_config = sherpa.FeatureConfig(normalize_samples=False)
    feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
    feat_config.fbank_opts.mel_opts.num_bins = num_mel_bins
    feat_config.fbank_opts.frame_opts.dither = frame_dither

    config = sherpa.OfflineRecognizerConfig(
        nn_model=nn_model_file,
        tokens=tokens_file,
        use_gpu=False,
        feat_config=feat_config,
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )

    recognizer = sherpa.OfflineRecognizer(config)

    return recognizer


def load_sherpa_offline_recognizer_from_paraformer(nn_model_file: str,
                                                   tokens_file: str,
                                                   sample_rate: int = 16000,
                                                   decoding_method: str = "greedy_search",
                                                   feature_dim: int = 80,
                                                   num_threads: int = 2,
                                                   ):
    recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
        paraformer=nn_model_file,
        tokens=tokens_file,
        num_threads=num_threads,
        sample_rate=sample_rate,
        feature_dim=feature_dim,
        decoding_method=decoding_method,
        debug=False,
    )
    return recognizer


def load_recognizer(repo_id: str,
                    nn_model_file: str,
                    tokens_file: str,
                    sub_folder: str,
                    local_model_dir: str,
                    loader: str,
                    decoding_method: str = "greedy_search",
                    num_active_paths: int = 4,
                    ):
    if not os.path.exists(local_model_dir):
        download_model(
            repo_id=repo_id,
            nn_model_file=nn_model_file,
            tokens_file=tokens_file,
            sub_folder=sub_folder,
            local_model_dir=local_model_dir,
        )

    if loader == "load_sherpa_offline_recognizer":
        recognizer = load_sherpa_offline_recognizer(
            nn_model_file=nn_model_file,
            tokens_file=tokens_file,
            decoding_method=decoding_method,
            num_active_paths=num_active_paths,
        )
    elif loader == "load_sherpa_offline_recognizer_from_paraformer":
        recognizer = load_sherpa_offline_recognizer_from_paraformer(
            nn_model_file=nn_model_file,
            tokens_file=tokens_file,
            decoding_method=decoding_method,
        )
    else:
        raise NotImplementedError("loader not support: {}".format(loader))
    return recognizer


if __name__ == "__main__":
    pass