asr / examples /wenet /test.py
HoneyTian's picture
update
5ce1fe8
raw
history blame
2.05 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from pathlib import Path
import huggingface_hub
import sherpa
from project_settings import project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo_id",
default="csukuangfj/wenet-chinese-model",
# default="csukuangfj/wenet-english-model",
type=str
)
parser.add_argument("--model_filename", default="final.zip", type=str)
parser.add_argument("--tokens_filename", default="units.txt", type=str)
parser.add_argument(
"--pretrained_model_dir",
default=(project_path / "pretrained_models").as_posix(),
type=str
)
args = parser.parse_args()
return args
def main():
args = get_args()
pretrained_model_dir = Path(args.pretrained_model_dir)
pretrained_model_dir.mkdir(exist_ok=True)
model_dir = pretrained_model_dir / "huggingface" / args.repo_id
model_dir.mkdir(exist_ok=True)
print("download model")
model_filename = huggingface_hub.hf_hub_download(
repo_id=args.repo_id,
filename=args.model_filename,
subfolder=".",
local_dir=model_dir.as_posix(),
)
print(model_filename)
print("download tokens")
token_filename = huggingface_hub.hf_hub_download(
repo_id=args.repo_id,
filename=args.tokens_filename,
subfolder=".",
local_dir=model_dir.as_posix(),
)
print(token_filename)
feat_config = sherpa.FeatureConfig(normalize_samples=False)
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
feat_config.fbank_opts.mel_opts.num_bins = 80
feat_config.fbank_opts.frame_opts.dither = 0
config = sherpa.OfflineRecognizerConfig(
nn_model=nn_model,
tokens=tokens,
use_gpu=False,
feat_config=feat_config,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
recognizer = sherpa.OfflineRecognizer(config)
return
if __name__ == "__main__":
main()