HoneyTian commited on
Commit
d2b6f9b
·
1 Parent(s): 3194abe
examples/wenet/toolbox_infer.py CHANGED
@@ -57,17 +57,24 @@ def main():
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
- recognizer = models.load_recognizer(
61
- repo_id=m_dict["repo_id"],
62
- nn_model_file=nn_model_file.as_posix(),
63
- tokens_file=tokens_file.as_posix(),
64
- sub_folder=m_dict["sub_folder"],
65
- local_model_dir=local_model_dir,
66
- recognizer_type=m_dict["recognizer_type"],
67
  decoding_method="greedy_search",
68
  num_active_paths=2,
69
  )
70
 
 
 
 
 
 
 
 
 
 
 
 
71
  # feat_config = sherpa.FeatureConfig(normalize_samples=False)
72
  # feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
73
  # feat_config.fbank_opts.mel_opts.num_bins = 80
 
57
  nn_model_file = local_model_dir / m_dict["nn_model_file"]
58
  tokens_file = local_model_dir / m_dict["tokens_file"]
59
 
60
+ recognizer = models.load_sherpa_offline_recognizer(
61
+ nn_model_file=nn_model_file,
62
+ tokens_file=tokens_file,
 
 
 
 
63
  decoding_method="greedy_search",
64
  num_active_paths=2,
65
  )
66
 
67
+ # recognizer = models.load_recognizer(
68
+ # repo_id=m_dict["repo_id"],
69
+ # nn_model_file=nn_model_file.as_posix(),
70
+ # tokens_file=tokens_file.as_posix(),
71
+ # sub_folder=m_dict["sub_folder"],
72
+ # local_model_dir=local_model_dir,
73
+ # recognizer_type=m_dict["recognizer_type"],
74
+ # decoding_method="greedy_search",
75
+ # num_active_paths=2,
76
+ # )
77
+
78
  # feat_config = sherpa.FeatureConfig(normalize_samples=False)
79
  # feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate
80
  # feat_config.fbank_opts.mel_opts.num_bins = 80
toolbox/k2_sherpa/models.py CHANGED
@@ -102,11 +102,6 @@ def load_recognizer(repo_id: str,
102
  )
103
 
104
  if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
105
- print("nn_model_file: {}".format(nn_model_file))
106
- print("tokens_file: {}".format(tokens_file))
107
- print("decoding_method: {}".format(decoding_method))
108
- print("num_active_paths: {}".format(num_active_paths))
109
-
110
  recognizer = load_sherpa_offline_recognizer(
111
  nn_model_file=nn_model_file,
112
  tokens_file=tokens_file,
 
102
  )
103
 
104
  if recognizer_type == EnumRecognizerType.sherpa_offline_recognizer.value:
 
 
 
 
 
105
  recognizer = load_sherpa_offline_recognizer(
106
  nn_model_file=nn_model_file,
107
  tokens_file=tokens_file,