File size: 5,954 Bytes
d33b446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7331450
 
d33b446
 
 
7331450
d33b446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
import os
import platform
import re
import string
from typing import List, Tuple

from project_settings import project_path

os.environ["HUGGINGFACE_HUB_CACHE"] = (project_path / "cache/huggingface/hub").as_posix()

logging.basicConfig(
    level=logging.INFO if platform.system() == "Windows" else logging.INFO,
    format="%(asctime)s %(levelname)s %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
)

logger = logging.getLogger(__name__)

import dingtalk_stream
from dingtalk_stream import AckMessage
import gradio as gr
from threading import Thread
import torch
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.bert.tokenization_bert import BertTokenizer

from project_settings import environment


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--client_id",
        default=environment.get("client_id"),
        type=str,
    )
    parser.add_argument(
        "--client_secret",
        default=environment.get("client_secret"),
        type=str,
    )
    parser.add_argument(
        "--model_name",
        default=(project_path / "trained_models/lib_service_4chan").as_posix() if platform.system() == "Windows" else "qgyd2021/lip_service_4chan",
        type=str,
    )
    parser.add_argument(
        "--dingtalk_develop_md_file",
        default="dingtalk_develop.md",
        type=str,
    )
    args = parser.parse_args()
    return args


class LipService4ChanHandler(dingtalk_stream.ChatbotHandler):
    def __init__(self,
                 model_name: str = "qgyd2021/lip_service_4chan",
                 max_input_len: int = 512,
                 max_new_tokens: int = 512,
                 top_p: float = 0.9,
                 temperature: float = 0.35,
                 repetition_penalty: float = 1.0,
                 device: str = "cuda" if torch.cuda.is_available() else "cpu",
                 ):
        super(LipService4ChanHandler, self).__init__()
        self.model_name = model_name
        self.max_input_len = max_input_len
        self.max_new_tokens = max_new_tokens
        self.top_p = top_p
        self.temperature = temperature
        self.repetition_penalty = repetition_penalty
        self.device = device

        tokenizer = BertTokenizer.from_pretrained(model_name)
        model = GPT2LMHeadModel.from_pretrained(model_name)
        model = model.eval()
        self.model = model
        self.tokenizer = tokenizer

    async def process(self, callback: dingtalk_stream.CallbackMessage):
        incoming_message = dingtalk_stream.ChatbotMessage.from_dict(callback.data)
        text = incoming_message.text.content.strip()

        logger.info("incoming message: {};".format(text))

        answer = self.get_answer(text)
        self.reply_text(answer, incoming_message)

        logger.info("incoming message: {}; reply text: {};".format(text, answer))

        return AckMessage.STATUS_OK, "OK"

    @staticmethod
    def remove_space_between_cn_en(text: str):
        splits = re.split(" ", text)
        if len(splits) < 2:
            return text

        result = ""
        for t in splits:
            if t == "":
                continue
            if re.search(f"[a-zA-Z0-9{string.punctuation}]$", result) and re.search("^[a-zA-Z0-9]", t):
                result += " "
                result += t
            else:
                if not result == "":
                    result += t
                else:
                    result = t

        if text.endswith(" "):
            result += " "
        return result

    def get_answer(self, text: str):
        prompt_encoded = self.tokenizer.__call__(text, add_special_tokens=True)
        input_ids: List[int] = prompt_encoded["input_ids"]
        input_ids = torch.tensor([input_ids], dtype=torch.long)
        input_ids = input_ids[:, -self.max_input_len:]

        self.tokenizer.eos_token = self.tokenizer.sep_token
        self.tokenizer.eos_token_id = self.tokenizer.sep_token_id

        # generate
        with torch.no_grad():
            outputs = self.model.generate(
                input_ids=input_ids,
                max_new_tokens=self.max_new_tokens,
                do_sample=True,
                top_p=self.top_p,
                temperature=self.temperature,
                repetition_penalty=self.repetition_penalty,
                eos_token_id=self.tokenizer.sep_token_id,
                pad_token_id=self.tokenizer.pad_token_id,
            )
            outputs = outputs.tolist()[0][len(input_ids[0]):]
            answer = self.tokenizer.decode(outputs)
            answer = answer.strip().replace(self.tokenizer.eos_token, "").strip()
            answer = self.remove_space_between_cn_en(answer)

        return answer


def dingtalk_server(client: dingtalk_stream.DingTalkStreamClient):
    client.start_forever()


def main():
    args = get_args()

    # ding talk
    credential = dingtalk_stream.Credential(
        client_id=args.client_id,
        client_secret=args.client_secret,
    )
    client = dingtalk_stream.DingTalkStreamClient(credential, logger)

    client.register_callback_handler(
        dingtalk_stream.chatbot.ChatbotMessage.TOPIC,
        LipService4ChanHandler(
            model_name=args.model_name
        )
    )
    # client.start_forever()

    # background task
    thread = Thread(target=dingtalk_server, kwargs={"client": client})
    thread.start()

    with open(args.dingtalk_develop_md_file, "r", encoding="utf-8") as f:
        dingtalk_develop_md = f.read()

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value=dingtalk_develop_md)

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=7860
    )

    return


if __name__ == '__main__':
    main()