Spaces:
Paused
Paused
File size: 5,954 Bytes
d33b446 7331450 d33b446 7331450 d33b446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
import os
import platform
import re
import string
from typing import List, Tuple
from project_settings import project_path
os.environ["HUGGINGFACE_HUB_CACHE"] = (project_path / "cache/huggingface/hub").as_posix()
logging.basicConfig(
level=logging.INFO if platform.system() == "Windows" else logging.INFO,
format="%(asctime)s %(levelname)s %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
logger = logging.getLogger(__name__)
import dingtalk_stream
from dingtalk_stream import AckMessage
import gradio as gr
from threading import Thread
import torch
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.bert.tokenization_bert import BertTokenizer
from project_settings import environment
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--client_id",
default=environment.get("client_id"),
type=str,
)
parser.add_argument(
"--client_secret",
default=environment.get("client_secret"),
type=str,
)
parser.add_argument(
"--model_name",
default=(project_path / "trained_models/lib_service_4chan").as_posix() if platform.system() == "Windows" else "qgyd2021/lip_service_4chan",
type=str,
)
parser.add_argument(
"--dingtalk_develop_md_file",
default="dingtalk_develop.md",
type=str,
)
args = parser.parse_args()
return args
class LipService4ChanHandler(dingtalk_stream.ChatbotHandler):
def __init__(self,
model_name: str = "qgyd2021/lip_service_4chan",
max_input_len: int = 512,
max_new_tokens: int = 512,
top_p: float = 0.9,
temperature: float = 0.35,
repetition_penalty: float = 1.0,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
):
super(LipService4ChanHandler, self).__init__()
self.model_name = model_name
self.max_input_len = max_input_len
self.max_new_tokens = max_new_tokens
self.top_p = top_p
self.temperature = temperature
self.repetition_penalty = repetition_penalty
self.device = device
tokenizer = BertTokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
model = model.eval()
self.model = model
self.tokenizer = tokenizer
async def process(self, callback: dingtalk_stream.CallbackMessage):
incoming_message = dingtalk_stream.ChatbotMessage.from_dict(callback.data)
text = incoming_message.text.content.strip()
logger.info("incoming message: {};".format(text))
answer = self.get_answer(text)
self.reply_text(answer, incoming_message)
logger.info("incoming message: {}; reply text: {};".format(text, answer))
return AckMessage.STATUS_OK, "OK"
@staticmethod
def remove_space_between_cn_en(text: str):
splits = re.split(" ", text)
if len(splits) < 2:
return text
result = ""
for t in splits:
if t == "":
continue
if re.search(f"[a-zA-Z0-9{string.punctuation}]$", result) and re.search("^[a-zA-Z0-9]", t):
result += " "
result += t
else:
if not result == "":
result += t
else:
result = t
if text.endswith(" "):
result += " "
return result
def get_answer(self, text: str):
prompt_encoded = self.tokenizer.__call__(text, add_special_tokens=True)
input_ids: List[int] = prompt_encoded["input_ids"]
input_ids = torch.tensor([input_ids], dtype=torch.long)
input_ids = input_ids[:, -self.max_input_len:]
self.tokenizer.eos_token = self.tokenizer.sep_token
self.tokenizer.eos_token_id = self.tokenizer.sep_token_id
# generate
with torch.no_grad():
outputs = self.model.generate(
input_ids=input_ids,
max_new_tokens=self.max_new_tokens,
do_sample=True,
top_p=self.top_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
answer = self.tokenizer.decode(outputs)
answer = answer.strip().replace(self.tokenizer.eos_token, "").strip()
answer = self.remove_space_between_cn_en(answer)
return answer
def dingtalk_server(client: dingtalk_stream.DingTalkStreamClient):
client.start_forever()
def main():
args = get_args()
# ding talk
credential = dingtalk_stream.Credential(
client_id=args.client_id,
client_secret=args.client_secret,
)
client = dingtalk_stream.DingTalkStreamClient(credential, logger)
client.register_callback_handler(
dingtalk_stream.chatbot.ChatbotMessage.TOPIC,
LipService4ChanHandler(
model_name=args.model_name
)
)
# client.start_forever()
# background task
thread = Thread(target=dingtalk_server, kwargs={"client": client})
thread.start()
with open(args.dingtalk_develop_md_file, "r", encoding="utf-8") as f:
dingtalk_develop_md = f.read()
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=dingtalk_develop_md)
blocks.queue().launch(
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=7860
)
return
if __name__ == '__main__':
main()
|