Spaces:
Configuration error
Configuration error
File size: 5,272 Bytes
3f31c34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
"""senet in pytorch
[1] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu
Squeeze-and-Excitation Networks
https://arxiv.org/abs/1709.01507
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicResidualSEBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride, r=16):
super().__init__()
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * self.expansion, 3, padding=1),
nn.BatchNorm2d(out_channels * self.expansion),
nn.ReLU(inplace=True)
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
nn.BatchNorm2d(out_channels * self.expansion)
)
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
nn.ReLU(inplace=True),
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
nn.Sigmoid()
)
def forward(self, x):
shortcut = self.shortcut(x)
residual = self.residual(x)
squeeze = self.squeeze(residual)
squeeze = squeeze.view(squeeze.size(0), -1)
excitation = self.excitation(squeeze)
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)
x = residual * excitation.expand_as(residual) + shortcut
return F.relu(x)
class BottleneckResidualSEBlock(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride, r=16):
super().__init__()
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * self.expansion, 1),
nn.BatchNorm2d(out_channels * self.expansion),
nn.ReLU(inplace=True)
)
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
nn.ReLU(inplace=True),
nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
nn.Sigmoid()
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
nn.BatchNorm2d(out_channels * self.expansion)
)
def forward(self, x):
shortcut = self.shortcut(x)
residual = self.residual(x)
squeeze = self.squeeze(residual)
squeeze = squeeze.view(squeeze.size(0), -1)
excitation = self.excitation(squeeze)
excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)
x = residual * excitation.expand_as(residual) + shortcut
return F.relu(x)
class SEResNet(nn.Module):
def __init__(self, block, block_num, class_num=1):
super().__init__()
self.in_channels = 64
self.pre = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.stage1 = self._make_stage(block, block_num[0], 64, 1)
self.stage2 = self._make_stage(block, block_num[1], 128, 2)
self.stage3 = self._make_stage(block, block_num[2], 256, 2)
self.stage4 = self._make_stage(block, block_num[3], 516, 2)
self.linear = nn.Linear(self.in_channels, class_num)
def forward(self, x):
x = self.pre(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = F.adaptive_avg_pool2d(x, 1)
x = x.view(x.size(0), -1)
x = self.linear(x)
return x
def _make_stage(self, block, num, out_channels, stride):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
while num - 1:
layers.append(block(self.in_channels, out_channels, 1))
num -= 1
return nn.Sequential(*layers)
def seresnet18():
return SEResNet(BasicResidualSEBlock, [2, 2, 2, 2])
def seresnet34():
return SEResNet(BasicResidualSEBlock, [3, 4, 6, 3])
def seresnet50():
return SEResNet(BottleneckResidualSEBlock, [3, 4, 6, 3])
def seresnet101():
return SEResNet(BottleneckResidualSEBlock, [3, 4, 23, 3])
def seresnet152():
return SEResNet(BottleneckResidualSEBlock, [3, 8, 36, 3]) |