File size: 18,454 Bytes
3f31c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
""" Full assembly of the parts to form the complete network """
import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# import ../db.py
from tag.tag import Stage
from .unet_parts import *
from torch import nn
import torch
from .res_net import resnet34, resnet18, resnet50, resnet101, resnet152, BasicBlock, Bottleneck, ResNet
import torch.nn.functional as F
from torch.autograd import Variable
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import math


class SaveFeatures():
    features = None

    # def __init__(self, m): self.hook = m.register_forward_hook(self.hook_fn)

    # def hook_fn(self, module, input, output): self.features = output

    # def remove(self): self.hook.remove()

    def __init__(self,m):
        self._outputs_lists = {}
        self.mymodule = m
        m.register_forward_hook(hook=self.save_output_hook)

    def save_output_hook(self, _, input, output):
        self._outputs_lists[input[0].device.index] = output
        self.features = self._outputs_lists

    def forward(self, x) -> list:
        self._outputs_lists[x.device.index] = []
        self.mymodule(x)
        return self._outputs_lists[x.device.index]


class UnetStageBlock(nn.Module):
    def __init__(self, stage, up_in, x_in, n_out, ratio):
        super().__init__()
        # super(UnetBlock, self).__init__()
        up_out = x_out = n_out // 2
        self.x_conv = nn.Conv2d(x_in, x_out, 1)
        self.g_fc = nn.Linear(7,x_out * 2)
        self.tr_conv = nn.ConvTranspose2d(up_in, up_out, 2, stride=2)
        self.stage = stage

        self.bn = nn.BatchNorm2d(n_out)

        self.pointwise = nn.Conv2d(14, n_out, kernel_size=1)
        self.depthwise = nn.Conv2d(n_out, n_out, kernel_size=3, stride=ratio , padding=1, groups=up_out) 

    def forward(self, up_p, x_p, give):
        up_p = self.tr_conv(up_p)
        x_p = self.x_conv(x_p)
        cat_p = torch.cat([up_p, x_p], dim=1)
        res = self.bn(F.relu(cat_p))
        # g_p = self.g_fc(give).unsqueeze(-1).unsqueeze(-1) * res
        g_p = self.depthwise(self.pointwise(give))
        res = self.stage(g_p,res)
        return res

class UnetBlock(nn.Module):
    def __init__(self, up_in, x_in, n_out):
        super().__init__()
        # super(UnetBlock, self).__init__()
        up_out = x_out = n_out // 2
        self.x_conv = nn.Conv2d(x_in, x_out, 1)
        self.tr_conv = nn.ConvTranspose2d(up_in, up_out, 2, stride=2)

        self.bn = nn.BatchNorm2d(n_out)

    def forward(self, up_p, x_p):
        up_p = self.tr_conv(up_p)
        x_p = self.x_conv(x_p)
        cat_p = torch.cat([up_p, x_p], dim=1)
        res = self.bn(F.relu(cat_p))
        return res

class TransUNet(nn.Module):

    def __init__(self, args, resnet='resnet34', num_classes=2, pretrained=False,
                in_chans=3,
                inplanes=64,
                num_layers=(3, 4, 6, 3),
                num_chs=(256, 512, 1024, 2048),
                num_strides=(1, 2, 2, 2),
                num_heads=(1, 1, 1, 1),
                num_parts=(1, 1, 1, 1),
                patch_sizes=(1, 1, 1, 1),
                drop_path=0.1,
                num_enc_heads=(1, 1, 1, 1),
                act=nn.GELU,
                ffn_exp=3,
                has_last_encoder=False
                ):
        super().__init__()
        # super(ResUnet, self).__init__()

        ''' ~~~~~ For the embedding transformer~~~~~'''
        cut, lr_cut = [8, 6]

        dim = args.dim #dim of transformer sequence, D of E
        img_size = 8 #emebeding 8*8*512
        channels = 512
        patch_size = args.patch_size
        depth = args.depth
        heads = args.heads
        mlp_dim = args.mlp_dim
        dim_head = 64

        assert img_size % patch_size == 0 , 'Image dimensions must be divisible by the patch size.'

        num_patches = (img_size // patch_size) ** 2
        patch_dim = channels * patch_size * patch_size

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
            nn.Linear(patch_dim, dim),
        )

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, dim)
        )
        '''~~~~~~End of embedding transformer~~~~~'''

        'unet and goinnet parameters'
        if resnet == 'resnet34':
            base_model = resnet34
        elif resnet == 'resnet18':
            base_model = resnet18
        elif resnet == 'resnet50':
            base_model = resnet50
        elif resnet == 'resnet101':
            base_model = resnet101
        elif resnet == 'resnet152':
            base_model = resnet152
        else:
            raise Exception('The Resnet Model only accept resnet18, resnet34, resnet50,'
                            'resnet101 and resnet152')
        
        '''define the stage for goinnet giving'''
        last_chs = (256,256,256,256)
        num_chs = (256, 256, 256, 256)
        down_samples = (2,4,8,16)
        n_l = 1
        stage_list = []
        for i in range(4):
            stage_list.append(
                Stage(last_chs[i],
                    num_chs[i],
                    n_l,
                    num_heads=num_heads[i], #1,2,4,8
                    num_parts = (patch_sizes[i]**2 * (args.image_size // down_samples[i] // patch_sizes[i])**2),
                    patch_size=patch_sizes[i],  #8,8,8,8
                    drop_path=drop_path, #0.05
                    ffn_exp=ffn_exp,    #mlp hidden fea
                    last_enc=has_last_encoder and i == len(num_layers) - 1)
                        )
        self.stages = nn.ModuleList(stage_list)

        patch_s = 8
        separator_list = []
        for i in range(7):
            separator_list.append(
                Stage(256,
                    2,
                    n_l,
                    num_heads=1, #1,2,4,8
                    num_parts = (patch_s**2 * (args.image_size // 2 // patch_s)**2),
                    patch_size=patch_s,   #8,8,8,8
                    drop_path=drop_path, #0.05
                    ffn_exp=ffn_exp    #mlp hidden fea
                        ))
        self.s_list = nn.ModuleList(separator_list)
                        
        # self.stage_encoding = Stage(512,
        #             512,
        #             1,
        #             num_heads=16, #1,2,4,8
        #             num_parts = (8**2),
        #             patch_size=8,  #8,8,8,8
        #             drop_path=drop_path, #0.05
        #             ffn_exp=ffn_exp,    #mlp hidden fea
        #             last_enc=has_last_encoder and i == len(num_layers) - 1)
        '''end'''

        layers = list(base_model(pretrained=pretrained).children())[:cut]
        self.check_layer = layers
        base_layers = nn.Sequential(*layers)
        self.rn = base_layers


        self.num_classes = num_classes
        self.sfs = [SaveFeatures(base_layers[i]) for i in [2, 4, 5, 6]]
        self.up1 = UnetStageBlock(self.stages[3], 512, 256, 256,16)
        self.up2 = UnetStageBlock(self.stages[2], 256, 128, 256,8)
        self.up3 = UnetStageBlock(self.stages[1], 256, 64, 256,4)
        self.up4 = UnetStageBlock(self.stages[0], 256, 64, 256,2)

        self.up5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

        self.pred1 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred2 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred3 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred4 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred6 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred7 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

        self.munet = MUNet(args)

        '''~~~ self definition ~~~'''
        self.fc = nn.Linear(7,dim)
        self.tr_conv = nn.ConvTranspose2d(512, 512, 2, stride=2)

    def forward(self, x, cond, mod = 'train'):
        aux = {}
        mergf = []
        img = x
        # x = torch.cat((x,heatmap),1)
        x = F.relu(self.rn(x))              # x = [b_size, 2048, 8, 8]
        emb = x

        if mod == 'shuffle':
            self.up1.eval()
            self.up2.eval()
            self.up3.eval()
            self.up4.eval()
            self.up5.eval()

        '''~~~ 0: agg ~~~'''
        x = self.up1(x, self.sfs[3].features[x.device.index], cond)
        mergf.append(x)
        x = self.up2(x, self.sfs[2].features[x.device.index], cond)
        mergf.append(x)
        x = self.up3(x, self.sfs[1].features[x.device.index], cond)
        mergf.append(x)
        x = self.up4(x, self.sfs[0].features[x.device.index], cond)
        fea = x
        output = self.up5(x)
        '''end'''

        if mod == 'shuffle':
            aux['mergfs'] = mergf
            return output, aux


        ave, maps = self.munet(img, output.detach())

        '''~~~ 0: ENDs ~~~'''

        pred_stack = torch.stack(maps) #7,b,c,w,w
        pred_stack_t = F.sigmoid(pred_stack)

        self_pred = pred_stack_t * torch.div(pred_stack_t, torch.sum(pred_stack_t, dim = 0, keepdim=True)) #7,b,c,w,w
        self_pred = rearrange(self_pred, "a b c h w -> b (a c) h w").contiguous() #b,7c,w,w
        cond = self_pred
        # maps = [nn.Upsample(scale_factor=2, mode='bilinear')(a) for a in maps]
        aux['maps'] = maps
        aux['cond'] = cond
        aux['mergfs'] = mergf
        aux['emb'] = emb
        return output, aux


    def close(self):
        for sf in self.sfs: sf.remove()

class MUNet(nn.Module):

    def __init__(self, args, resnet='resnet34', num_classes=2, pretrained=False):
        super().__init__()
        # super(ResUnet, self).__init__()

        ''' ~~~~~ For the embedding transformer~~~~~'''
        cut, lr_cut = [8, 6]

        'unet and goinnet parameters'
        if resnet == 'resnet34':
            base_model = resnet34
        elif resnet == 'resnet18':
            base_model = resnet18
        elif resnet == 'resnet50':
            base_model = resnet50
        elif resnet == 'resnet101':
            base_model = resnet101
        elif resnet == 'resnet152':
            base_model = resnet152
        else:
            raise Exception('The Resnet Model only accept resnet18, resnet34, resnet50,'
                            'resnet101 and resnet152')

        layers = list(base_model(pretrained=pretrained,inplanes = 5).children())[:cut]
        self.check_layer = layers
        base_layers = nn.Sequential(*layers)
        self.rn = base_layers


        self.num_classes = num_classes
        self.sfs = [SaveFeatures(base_layers[i]) for i in [2, 4, 5, 6]]
        self.up1 = UnetBlock(512, 256, 256)
        self.up2 = UnetBlock(256, 128, 256)
        self.up3 = UnetBlock(256, 64, 256)
        self.up4 = UnetBlock(256, 64, 256)

        self.up5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

        self.pred1 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred2 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred3 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred4 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred6 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred7 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

    def forward(self, x, heatmap):
        x = torch.cat((x,heatmap),1)
        x = F.relu(self.rn(x))              # x = [b_size, 2048, 8, 8]


        '''~~~ 0: Decoder ~~~'''
        x = self.up1(x, self.sfs[3].features[x.device.index])
        cond3 = x
        x = self.up2(x, self.sfs[2].features[x.device.index])
        cond2 = x
        x = self.up3(x, self.sfs[1].features[x.device.index])
        cond1 = x
        x = self.up4(x, self.sfs[0].features[x.device.index])
        cond0 = x
        fea = x
        output = self.up5(x)
        '''~~~ 0: ENDs ~~~'''
        out1 = self.pred1(fea)
        out2 = self.pred2(fea)
        out3 = self.pred3(fea)
        out4 = self.pred4(fea)
        out5 = self.pred5(fea)
        out6 = self.pred6(fea)
        out7 = self.pred7(fea)
        '''
        if self.num_classes==1:
            output = x_out[:, 0]
        else:
            output = x_out[:, :self.num_classes]
        '''
        return (out1+out2+out3+out4+out5+out6+out7) / 7, [out1,out2,out3,out4,out5,out6,out7]

    def close(self):
        for sf in self.sfs: sf.remove()

class UNet(nn.Module):

    def __init__(self, args, resnet='resnet34', num_classes=2, pretrained=False):
        super().__init__()
        # super(ResUnet, self).__init__()

        ''' ~~~~~ For the embedding transformer~~~~~'''
        cut, lr_cut = [8, 6]

        'unet and goinnet parameters'
        if resnet == 'resnet34':
            base_model = resnet34
        elif resnet == 'resnet18':
            base_model = resnet18
        elif resnet == 'resnet50':
            base_model = resnet50
        elif resnet == 'resnet101':
            base_model = resnet101
        elif resnet == 'resnet152':
            base_model = resnet152
        else:
            raise Exception('The Resnet Model only accept resnet18, resnet34, resnet50,'
                            'resnet101 and resnet152')

        layers = list(base_model(pretrained=pretrained,inplanes = 3).children())[:cut]
        self.check_layer = layers
        base_layers = nn.Sequential(*layers)
        self.rn = base_layers


        self.num_classes = num_classes
        self.sfs = [SaveFeatures(base_layers[i]) for i in [2, 4, 5, 6]]
        self.up1 = UnetBlock(512, 256, 256)
        self.up2 = UnetBlock(256, 128, 256)
        self.up3 = UnetBlock(256, 64, 256)
        self.up4 = UnetBlock(256, 64, 256)

        self.up5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

        self.pred1 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred2 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred3 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred4 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred5 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred6 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)
        self.pred7 = nn.ConvTranspose2d(256, self.num_classes, 2, stride=2)

    def forward(self, x):
        x = F.relu(self.rn(x))              # x = [b_size, 2048, 8, 8]


        '''~~~ 0: Decoder ~~~'''
        x = self.up1(x, self.sfs[3].features[x.device.index])
        x = self.up2(x, self.sfs[2].features[x.device.index])
        x = self.up3(x, self.sfs[1].features[x.device.index])
        x = self.up4(x, self.sfs[0].features[x.device.index])
        fea = x
        output = self.up5(x)
        '''~~~ 0: ENDs ~~~'''
        '''
        if self.num_classes==1:
            output = x_out[:, 0]
        else:
            output = x_out[:, :self.num_classes]
        '''
        return output

    def close(self):
        for sf in self.sfs: sf.remove()


class GoinNet(nn.Module):
    def __init__(self,
                args, 
                resnet,
                in_chans=3,
                inplanes=64,
                num_layers=(3, 4, 6, 3),
                num_chs=(256, 512, 1024, 2048),
                num_strides=(1, 2, 2, 2),
                num_heads=(1, 1, 1, 1),
                num_parts=(1, 1, 1, 1),
                patch_sizes=(1, 1, 1, 1),
                drop_path=0.1,
                num_enc_heads=(1, 1, 1, 1),
                act=nn.GELU,
                ffn_exp=3,
                has_last_encoder=False,
                pretrained=False
                ):
        self.inplanes = 64
        super(GoinNet, self).__init__()

        cut, lr_cut = [8, 6]
        self.conv1 = nn.Conv2d(2, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        last_chs = (64,64,128,256)
        num_chs = (64, 64, 128, 256)
        down_samples = (2,4,8,16)
        n_l = 1

        self.stage = Stage(last_chs[i],
            num_chs[i],
            n_l,
            num_heads=num_heads[i], #1,2,4,8
            num_parts = (patch_sizes[i]**2 * (args.image_size // down_samples[i] // patch_sizes[i])**2) ,
            patch_size=patch_sizes[i],  #8,8,8,8
            drop_path=drop_path, #0.05
            ffn_exp=ffn_exp,    #mlp hidden fea
            last_enc=has_last_encoder and i == len(num_layers) - 1)


            
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, img, x, p):

        x = torch.cat((img,x),1)
        x = F.relu(self.rn(x))

        x = self.stages[0](p[0].features[x.device.index], self.sfs[0].features[x.device.index])
        turn0 = x

        x = self.stages[1](p[1].features[x.device.index], self.sfs[1].features[x.device.index])
        turn1 = x

        x = self.stages[2](p[2].features[x.device.index], self.sfs[2].features[x.device.index])
        turn2 = x

        x = self.stages[3](p[3].features[x.device.index], self.sfs[3].features[x.device.index])
        turn3 = x

        return x, [turn0, turn1, turn2, turn3]