Spaces:
Configuration error
Configuration error
import itertools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath as TimmDropPath | |
from ...common import loralib as lora | |
from .utils import DropPath | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, | |
out_features=None, act_layer=nn.GELU, drop=0., lora_rank=4): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.norm = nn.LayerNorm(in_features) | |
self.fc1 = lora.SVDLinear(in_features, hidden_features,r=lora_rank) | |
self.fc2 = lora.SVDLinear(hidden_features, out_features,r=lora_rank) | |
self.act = act_layer() | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.norm(x) | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Conv2d_BN(torch.nn.Sequential): | |
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, | |
groups=1, bn_weight_init=1): | |
super().__init__() | |
self.add_module('c', torch.nn.Conv2d( | |
a, b, ks, stride, pad, dilation, groups, bias=False)) | |
bn = torch.nn.BatchNorm2d(b) | |
torch.nn.init.constant_(bn.weight, bn_weight_init) | |
torch.nn.init.constant_(bn.bias, 0) | |
self.add_module('bn', bn) | |
def fuse(self): | |
c, bn = self._modules.values() | |
w = bn.weight / (bn.running_var + bn.eps)**0.5 | |
w = c.weight * w[:, None, None, None] | |
b = bn.bias - bn.running_mean * bn.weight / \ | |
(bn.running_var + bn.eps)**0.5 | |
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( | |
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) | |
m.weight.data.copy_(w) | |
m.bias.data.copy_(b) | |
return m | |
class Attention(torch.nn.Module): | |
def __init__(self, dim, key_dim, num_heads=8, | |
attn_ratio=4, | |
resolution=(14, 14), | |
lora_rank=4, | |
): | |
super().__init__() | |
# (h, w) | |
assert isinstance(resolution, tuple) and len(resolution) == 2 | |
self.num_heads = num_heads | |
self.scale = key_dim ** -0.5 | |
self.key_dim = key_dim | |
self.nh_kd = nh_kd = key_dim * num_heads | |
self.d = int(attn_ratio * key_dim) | |
self.dh = int(attn_ratio * key_dim) * num_heads | |
self.attn_ratio = attn_ratio | |
h = self.dh + nh_kd * 2 | |
self.norm = nn.LayerNorm(dim) | |
self.qkv = lora.SVDLinear(dim, h, r=lora_rank) | |
self.proj = lora.SVDLinear(self.dh, dim,r=lora_rank) | |
points = list(itertools.product( | |
range(resolution[0]), range(resolution[1]))) | |
N = len(points) | |
attention_offsets = {} | |
idxs = [] | |
for p1 in points: | |
for p2 in points: | |
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) | |
if offset not in attention_offsets: | |
attention_offsets[offset] = len(attention_offsets) | |
idxs.append(attention_offsets[offset]) | |
self.attention_biases = torch.nn.Parameter( | |
torch.zeros(num_heads, len(attention_offsets))) | |
self.register_buffer('attention_bias_idxs', | |
torch.LongTensor(idxs).view(N, N), | |
persistent=False) | |
def train(self, mode=True): | |
super().train(mode) | |
if mode and hasattr(self, 'ab'): | |
del self.ab | |
else: | |
self.ab = self.attention_biases[:, self.attention_bias_idxs] | |
# self.register_buffer('ab', | |
# self.attention_biases[:, self.attention_bias_idxs], | |
# persistent=False) | |
def forward(self, x): # x (B,N,C) | |
B, N, _ = x.shape | |
# Normalization | |
x = self.norm(x) | |
qkv = self.qkv(x) | |
# (B, N, num_heads, d) | |
q, k, v = qkv.view(B, N, self.num_heads, - | |
1).split([self.key_dim, self.key_dim, self.d], dim=3) | |
# (B, num_heads, N, d) | |
q = q.permute(0, 2, 1, 3) | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
attn = ( | |
(q @ k.transpose(-2, -1)) * self.scale | |
+ | |
(self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab) | |
) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) | |
x = self.proj(x) | |
return x | |
class TinyViTAdaloraBlock(nn.Module): | |
r""" TinyViT Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int, int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
local_conv_size (int): the kernel size of the convolution between | |
Attention and MLP. Default: 3 | |
activation: the activation function. Default: nn.GELU | |
""" | |
def __init__(self, args, dim, input_resolution, num_heads, window_size=7, | |
mlp_ratio=4., drop=0., drop_path=0., | |
local_conv_size=3, | |
activation=nn.GELU, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
assert window_size > 0, 'window_size must be greater than 0' | |
self.window_size = window_size | |
self.mlp_ratio = mlp_ratio | |
if(args.mid_dim != None): | |
lora_rank = args.mid_dim | |
else: | |
lora_rank = 4 | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
assert dim % num_heads == 0, 'dim must be divisible by num_heads' | |
head_dim = dim // num_heads | |
window_resolution = (window_size, window_size) | |
self.attn = Attention(dim, head_dim, num_heads, | |
attn_ratio=1, resolution=window_resolution,lora_rank=lora_rank) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
mlp_activation = activation | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, | |
act_layer=mlp_activation, drop=drop,lora_rank=lora_rank) | |
pad = local_conv_size // 2 | |
self.local_conv = Conv2d_BN( | |
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) | |
def forward(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
res_x = x | |
if H == self.window_size and W == self.window_size: | |
x = self.attn(x) | |
else: | |
x = x.view(B, H, W, C) | |
pad_b = (self.window_size - H % | |
self.window_size) % self.window_size | |
pad_r = (self.window_size - W % | |
self.window_size) % self.window_size | |
padding = pad_b > 0 or pad_r > 0 | |
if padding: | |
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) | |
pH, pW = H + pad_b, W + pad_r | |
nH = pH // self.window_size | |
nW = pW // self.window_size | |
# window partition | |
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( | |
B * nH * nW, self.window_size * self.window_size, C) | |
x = self.attn(x) | |
# window reverse | |
x = x.view(B, nH, nW, self.window_size, self.window_size, | |
C).transpose(2, 3).reshape(B, pH, pW, C) | |
if padding: | |
x = x[:, :H, :W].contiguous() | |
x = x.view(B, L, C) | |
x = res_x + self.drop_path(x) | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
x = self.local_conv(x) | |
x = x.view(B, C, L).transpose(1, 2) | |
x = x + self.drop_path(self.mlp(x)) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ | |
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}" |