Spaces:
Configuration error
Configuration error
# -------------------------------------------------------- | |
# TinyViT Model Architecture | |
# Copyright (c) 2022 Microsoft | |
# Adapted from LeViT and Swin Transformer | |
# LeViT: (https://github.com/facebookresearch/levit) | |
# Swin: (https://github.com/microsoft/swin-transformer) | |
# Build the TinyViT Model | |
# -------------------------------------------------------- | |
import itertools | |
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import DropPath as TimmDropPath | |
from timm.models.layers import to_2tuple, trunc_normal_ | |
from timm.models.registry import register_model | |
from ...common import LayerNorm2d | |
from .adalora_block import TinyViTAdaloraBlock | |
from .adapter_block import TinyViTAdapterBlock | |
from .block import TinyViTBlock | |
from .lora_block import TinyViTLoraBlock | |
from .utils import Conv2d_BN, DropPath, Mlp | |
class PatchEmbed(nn.Module): | |
def __init__(self, in_chans, embed_dim, resolution, activation): | |
super().__init__() | |
img_size: Tuple[int, int] = to_2tuple(resolution) | |
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) | |
self.num_patches = self.patches_resolution[0] * \ | |
self.patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
n = embed_dim | |
self.seq = nn.Sequential( | |
Conv2d_BN(in_chans, n // 2, 3, 2, 1), | |
activation(), | |
Conv2d_BN(n // 2, n, 3, 2, 1), | |
) | |
def forward(self, x): | |
return self.seq(x) | |
class MBConv(nn.Module): | |
def __init__(self, in_chans, out_chans, expand_ratio, | |
activation, drop_path): | |
super().__init__() | |
self.in_chans = in_chans | |
self.hidden_chans = int(in_chans * expand_ratio) | |
self.out_chans = out_chans | |
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) | |
self.act1 = activation() | |
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, | |
ks=3, stride=1, pad=1, groups=self.hidden_chans) | |
self.act2 = activation() | |
self.conv3 = Conv2d_BN( | |
self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) | |
self.act3 = activation() | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.act2(x) | |
x = self.conv3(x) | |
x = self.drop_path(x) | |
x += shortcut | |
x = self.act3(x) | |
return x | |
class PatchMerging(nn.Module): | |
def __init__(self, input_resolution, dim, out_dim, activation): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.out_dim = out_dim | |
self.act = activation() | |
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) | |
stride_c=2 | |
if(out_dim==320 or out_dim==448 or out_dim==576): | |
stride_c=1 | |
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) | |
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) | |
def forward(self, x): | |
if x.ndim == 3: | |
H, W = self.input_resolution | |
B = len(x) | |
# (B, C, H, W) | |
x = x.view(B, H, W, -1).permute(0, 3, 1, 2) | |
x = self.conv1(x) | |
x = self.act(x) | |
x = self.conv2(x) | |
x = self.act(x) | |
x = self.conv3(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class ConvLayer(nn.Module): | |
def __init__(self, dim, input_resolution, depth, | |
activation, | |
drop_path=0., downsample=None, use_checkpoint=False, | |
out_dim=None, | |
conv_expand_ratio=4., | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
MBConv(dim, dim, conv_expand_ratio, activation, | |
drop_path[i] if isinstance(drop_path, list) else drop_path, | |
) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
class BasicLayer(nn.Module): | |
""" A basic TinyViT layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3 | |
activation: the activation function. Default: nn.GELU | |
out_dim: the output dimension of the layer. Default: dim | |
""" | |
def __init__(self, args, dim, input_resolution, depth, num_heads, window_size, | |
mlp_ratio=4., drop=0., | |
drop_path=0., downsample=None, use_checkpoint=False, | |
local_conv_size=3, | |
activation=nn.GELU, | |
out_dim=None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
if args.mod == 'sam_adpt': | |
block_class = TinyViTAdapterBlock | |
elif args.mod == 'sam_lora': | |
block_class = TinyViTLoraBlock | |
elif args.mod == 'sam_adalora': | |
block_class = TinyViTAdaloraBlock | |
else: | |
block_class = TinyViTBlock | |
self.blocks = nn.ModuleList([ | |
block_class(dim=dim, args = args,input_resolution=input_resolution, | |
num_heads=num_heads, window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
drop=drop, | |
drop_path=drop_path[i] if isinstance( | |
drop_path, list) else drop_path, | |
local_conv_size=local_conv_size, | |
activation=activation, | |
) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
class TinyViT(nn.Module): | |
def __init__(self, args, img_size=224, in_chans=3, num_classes=1000, | |
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 24], | |
window_sizes=[7, 7, 14, 7], | |
mlp_ratio=4., | |
drop_rate=0., | |
drop_path_rate=0.1, | |
use_checkpoint=False, | |
mbconv_expand_ratio=4.0, | |
local_conv_size=3, | |
layer_lr_decay=1.0, | |
): | |
super().__init__() | |
self.img_size=img_size | |
#import pdb;pdb.set_trace() | |
self.num_classes = num_classes | |
self.depths = depths | |
self.num_layers = len(depths) | |
self.mlp_ratio = mlp_ratio | |
activation = nn.GELU | |
self.patch_embed = PatchEmbed(in_chans=in_chans, | |
embed_dim=embed_dims[0], | |
resolution=img_size, | |
activation=activation) | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, | |
sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
kwargs = dict(dim=embed_dims[i_layer], | |
input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)), | |
patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))), | |
# input_resolution=(patches_resolution[0] // (2 ** i_layer), | |
# patches_resolution[1] // (2 ** i_layer)), | |
depth=depths[i_layer], | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
downsample=PatchMerging if ( | |
i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint, | |
out_dim=embed_dims[min( | |
i_layer + 1, len(embed_dims) - 1)], | |
activation=activation, | |
) | |
if i_layer == 0: | |
layer = ConvLayer( | |
conv_expand_ratio=mbconv_expand_ratio, | |
**kwargs, | |
) | |
else: | |
layer = BasicLayer( | |
args = args, | |
num_heads=num_heads[i_layer], | |
window_size=window_sizes[i_layer], | |
mlp_ratio=self.mlp_ratio, | |
drop=drop_rate, | |
local_conv_size=local_conv_size, | |
**kwargs) | |
self.layers.append(layer) | |
# Classifier head | |
self.norm_head = nn.LayerNorm(embed_dims[-1]) | |
self.head = nn.Linear( | |
embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() | |
# init weights | |
self.apply(self._init_weights) | |
self.set_layer_lr_decay(layer_lr_decay) | |
self.neck = nn.Sequential( | |
nn.Conv2d( | |
embed_dims[-1], | |
256, | |
kernel_size=1, | |
bias=False, | |
), | |
LayerNorm2d(256), | |
nn.Conv2d( | |
256, | |
256, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
LayerNorm2d(256), | |
) | |
def set_layer_lr_decay(self, layer_lr_decay): | |
decay_rate = layer_lr_decay | |
# layers -> blocks (depth) | |
depth = sum(self.depths) | |
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] | |
#print("LR SCALES:", lr_scales) | |
def _set_lr_scale(m, scale): | |
for p in m.parameters(): | |
p.lr_scale = scale | |
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) | |
i = 0 | |
for layer in self.layers: | |
for block in layer.blocks: | |
block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) | |
i += 1 | |
if layer.downsample is not None: | |
layer.downsample.apply( | |
lambda x: _set_lr_scale(x, lr_scales[i - 1])) | |
assert i == depth | |
for m in [self.norm_head, self.head]: | |
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) | |
for k, p in self.named_parameters(): | |
p.param_name = k | |
def _check_lr_scale(m): | |
for p in m.parameters(): | |
assert hasattr(p, 'lr_scale'), p.param_name | |
self.apply(_check_lr_scale) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay_keywords(self): | |
return {'attention_biases'} | |
def forward_features(self, x): | |
# x: (N, C, H, W) | |
x = self.patch_embed(x) | |
x = self.layers[0](x) | |
start_i = 1 | |
for i in range(start_i, len(self.layers)): | |
layer = self.layers[i] | |
x = layer(x) | |
B,_,C=x.size() | |
x = x.view(B, self.img_size//16, self.img_size//16, C) | |
x=x.permute(0, 3, 1, 2) | |
x=self.neck(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
#x = self.norm_head(x) | |
#x = self.head(x) | |
return x | |
_checkpoint_url_format = \ | |
'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth' | |
_provided_checkpoints = { | |
'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill', | |
'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill', | |
'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill', | |
'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill', | |
'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill', | |
} | |
def register_tiny_vit_model(fn): | |
'''Register a TinyViT model | |
It is a wrapper of `register_model` with loading the pretrained checkpoint. | |
''' | |
def fn_wrapper(pretrained=False, **kwargs): | |
model = fn() | |
if pretrained: | |
model_name = fn.__name__ | |
assert model_name in _provided_checkpoints, \ | |
f'Sorry that the checkpoint `{model_name}` is not provided yet.' | |
url = _checkpoint_url_format.format( | |
_provided_checkpoints[model_name]) | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url=url, | |
map_location='cpu', check_hash=False, | |
) | |
model.load_state_dict(checkpoint['model']) | |
return model | |
# rename the name of fn_wrapper | |
fn_wrapper.__name__ = fn.__name__ | |
return register_model(fn_wrapper) | |
# @register_tiny_vit_model | |
def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0): | |
return TinyViT( | |
num_classes=num_classes, | |
embed_dims=[64, 128, 160, 320], | |
depths=[2, 2, 6, 2], | |
num_heads=[2, 4, 5, 10], | |
window_sizes=[7, 7, 14, 7], | |
drop_path_rate=drop_path_rate, | |
) | |
# @register_tiny_vit_model | |
def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1): | |
return TinyViT( | |
num_classes=num_classes, | |
embed_dims=[64, 128, 256, 448], | |
depths=[2, 2, 6, 2], | |
num_heads=[2, 4, 8, 14], | |
window_sizes=[7, 7, 14, 7], | |
drop_path_rate=drop_path_rate, | |
) | |
# @register_tiny_vit_model | |
def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2): | |
return TinyViT( | |
num_classes=num_classes, | |
embed_dims=[96, 192, 384, 576], | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 18], | |
window_sizes=[7, 7, 14, 7], | |
drop_path_rate=drop_path_rate, | |
) | |
# @register_tiny_vit_model | |
def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1): | |
return TinyViT( | |
img_size=384, | |
num_classes=num_classes, | |
embed_dims=[96, 192, 384, 576], | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 18], | |
window_sizes=[12, 12, 24, 12], | |
drop_path_rate=drop_path_rate, | |
) | |
# @register_tiny_vit_model | |
def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1): | |
return TinyViT( | |
img_size=512, | |
num_classes=num_classes, | |
embed_dims=[96, 192, 384, 576], | |
depths=[2, 2, 6, 2], | |
num_heads=[3, 6, 12, 18], | |
window_sizes=[16, 16, 32, 16], | |
drop_path_rate=drop_path_rate, | |
) |