Spaces:
Configuration error
Configuration error
# ------------------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft Corporation. All rights reserved. | |
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. | |
# ------------------------------------------------------------------------------------------ | |
from typing import Dict | |
import torch | |
import torch.nn as nn | |
from .layers import LoRALayer | |
def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None: | |
for n, p in model.named_parameters(): | |
if 'lora_' not in n: | |
p.requires_grad = False | |
if bias == 'none': | |
return | |
elif bias == 'all': | |
for n, p in model.named_parameters(): | |
if 'bias' in n: | |
p.requires_grad = True | |
elif bias == 'lora_only': | |
for m in model.modules(): | |
if isinstance(m, LoRALayer) and \ | |
hasattr(m, 'bias') and \ | |
m.bias is not None: | |
m.bias.requires_grad = True | |
else: | |
raise NotImplementedError | |
def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]: | |
my_state_dict = model.state_dict() | |
if bias == 'none': | |
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k} | |
elif bias == 'all': | |
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k} | |
elif bias == 'lora_only': | |
to_return = {} | |
for k in my_state_dict: | |
if 'lora_' in k: | |
to_return[k] = my_state_dict[k] | |
bias_name = k.split('lora_')[0]+'bias' | |
if bias_name in my_state_dict: | |
to_return[bias_name] = my_state_dict[bias_name] | |
return to_return | |
else: | |
raise NotImplementedError |