Spaces:
Configuration error
Configuration error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class LinearBottleNeck(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, t=6, class_num=1): | |
super().__init__() | |
self.residual = nn.Sequential( | |
nn.Conv2d(in_channels, in_channels * t, 1), | |
nn.BatchNorm2d(in_channels * t), | |
nn.ReLU6(inplace=True), | |
nn.Conv2d(in_channels * t, in_channels * t, 3, stride=stride, padding=1, groups=in_channels * t), | |
nn.BatchNorm2d(in_channels * t), | |
nn.ReLU6(inplace=True), | |
nn.Conv2d(in_channels * t, out_channels, 1), | |
nn.BatchNorm2d(out_channels) | |
) | |
self.stride = stride | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
def forward(self, x): | |
residual = self.residual(x) | |
if self.stride == 1 and self.in_channels == self.out_channels: | |
residual += x | |
return residual | |
class ImplicitNet(nn.Module): | |
def __init__(self, class_num=1): | |
super().__init__() | |
self.pre = nn.Sequential( | |
nn.Conv2d(5, 32, 1, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU6(inplace=True) | |
) | |
self.stage1 = LinearBottleNeck(32, 16, 1, 1) | |
self.stage2 = self._make_stage(2, 16, 24, 2, 6) | |
self.stage3 = self._make_stage(3, 24, 32, 2, 6) | |
self.stage4 = self._make_stage(4, 32, 64, 2, 6) | |
self.stage5 = self._make_stage(3, 64, 96, 1, 6) | |
self.stage6 = self._make_stage(3, 96, 160, 1, 6) | |
self.stage7 = LinearBottleNeck(160, 320, 1, 6) | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(320, 1280, 1), | |
nn.BatchNorm2d(1280), | |
nn.ReLU6(inplace=True) | |
) | |
self.conv2 = nn.Conv2d(1280, class_num, 1) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, seg, label, natural): | |
label = label.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(seg.size()) | |
x = torch.cat((label,natural,seg),1) # concated input | |
x = self.pre(x) | |
x = self.stage1(x) | |
x = self.stage2(x) | |
x = self.stage3(x) | |
x = self.stage4(x) | |
x = self.stage5(x) | |
x = self.stage6(x) | |
x = self.stage7(x) | |
x = self.conv1(x) | |
#x = F.adaptive_avg_pool2d(x, 1) | |
x = self.conv2(x) # (b,h/s,w/s,1) | |
x = self.sigmoid(x) | |
return x | |
def _make_stage(self, repeat, in_channels, out_channels, stride, t): | |
layers = [] | |
layers.append(LinearBottleNeck(in_channels, out_channels, stride, t)) | |
while repeat - 1: | |
layers.append(LinearBottleNeck(out_channels, out_channels, 1, t)) | |
repeat -= 1 | |
return nn.Sequential(*layers) | |
def implicitnet(): | |
return ImplicitNet() |