Spaces:
Configuration error
Configuration error
"""resnet in pytorch | |
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. | |
Deep Residual Learning for Image Recognition | |
https://arxiv.org/abs/1512.03385v1 | |
""" | |
import torch | |
import torch.nn as nn | |
class BasicBlock(nn.Module): | |
"""Basic Block for resnet 18 and resnet 34 | |
""" | |
#BasicBlock and BottleNeck block | |
#have different output size | |
#we use class attribute expansion | |
#to distinct | |
expansion = 1 | |
def __init__(self, in_channels, out_channels, stride=1): | |
super().__init__() | |
#residual function | |
self.residual_function = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(out_channels * BasicBlock.expansion) | |
) | |
#shortcut | |
self.shortcut = nn.Sequential() | |
#the shortcut output dimension is not the same with residual function | |
#use 1*1 convolution to match the dimension | |
if stride != 1 or in_channels != BasicBlock.expansion * out_channels: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(out_channels * BasicBlock.expansion) | |
) | |
def forward(self, x): | |
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) | |
class BottleNeck(nn.Module): | |
"""Residual block for resnet over 50 layers | |
""" | |
expansion = 4 | |
def __init__(self, in_channels, out_channels, stride=1): | |
super().__init__() | |
self.residual_function = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False), | |
nn.BatchNorm2d(out_channels * BottleNeck.expansion), | |
) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_channels != out_channels * BottleNeck.expansion: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False), | |
nn.BatchNorm2d(out_channels * BottleNeck.expansion) | |
) | |
def forward(self, x): | |
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) | |
class ResNet(nn.Module): | |
def __init__(self, block, num_block, num_classes=1): | |
super().__init__() | |
self.in_channels = 64 | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True)) | |
#we use a different inputsize than the original paper | |
#so conv2_x's stride is 1 | |
self.conv2_x = self._make_layer(block, 64, num_block[0], 2) | |
self.conv3_x = self._make_layer(block, 128, num_block[1], 2) | |
self.conv4_x = self._make_layer(block, 256, num_block[2], 2) | |
self.conv5_x = self._make_layer(block, 512, num_block[3], 2) | |
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
def _make_layer(self, block, out_channels, num_blocks, stride): | |
"""make resnet layers(by layer i didnt mean this 'layer' was the | |
same as a neuron netowork layer, ex. conv layer), one layer may | |
contain more than one residual block | |
Args: | |
block: block type, basic block or bottle neck block | |
out_channels: output depth channel number of this layer | |
num_blocks: how many blocks per layer | |
stride: the stride of the first block of this layer | |
Return: | |
return a resnet layer | |
""" | |
# we have num_block blocks per layer, the first block | |
# could be 1 or 2, other blocks would always be 1 | |
strides = [stride] + [1] * (num_blocks - 1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_channels, out_channels, stride)) | |
self.in_channels = out_channels * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
output = self.conv1(x) | |
output = self.conv2_x(output) | |
output = self.conv3_x(output) | |
output = self.conv4_x(output) | |
output = self.conv5_x(output) | |
output = self.avg_pool(output) | |
output = output.view(output.size(0), -1) | |
output = self.fc(output) | |
return output | |
def resnet18(): | |
""" return a ResNet 18 object | |
""" | |
return ResNet(BasicBlock, [2, 2, 2, 2]) | |
def resnet34(): | |
""" return a ResNet 34 object | |
""" | |
return ResNet(BasicBlock, [3, 4, 6, 3]) | |
def resnet50(): | |
""" return a ResNet 50 object | |
""" | |
return ResNet(BottleNeck, [3, 4, 6, 3]) | |
def resnet101(): | |
""" return a ResNet 101 object | |
""" | |
return ResNet(BottleNeck, [3, 4, 23, 3]) | |
def resnet152(): | |
""" return a ResNet 152 object | |
""" | |
return ResNet(BottleNeck, [3, 8, 36, 3]) | |