Spaces:
Configuration error
Configuration error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
import urllib.request | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from functools import partial | |
from pathlib import Path | |
import torch | |
from ..common import TwoWayTransformer | |
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam | |
def build_sam_vit_h(args = None, checkpoint=None): | |
return _build_sam( | |
args, | |
encoder_embed_dim=1280, | |
encoder_depth=32, | |
encoder_num_heads=16, | |
encoder_global_attn_indexes=[7, 15, 23, 31], | |
checkpoint=checkpoint, | |
) | |
build_sam = build_sam_vit_h | |
def build_sam_vit_l(args, checkpoint=None): | |
return _build_sam( | |
args, | |
encoder_embed_dim=1024, | |
encoder_depth=24, | |
encoder_num_heads=16, | |
encoder_global_attn_indexes=[5, 11, 17, 23], | |
checkpoint=checkpoint, | |
) | |
def build_sam_vit_b(args, checkpoint=None): | |
return _build_sam( | |
args, | |
encoder_embed_dim=768, | |
encoder_depth=12, | |
encoder_num_heads=12, | |
encoder_global_attn_indexes=[2, 5, 8, 11], | |
checkpoint=checkpoint, | |
) | |
sam_model_registry = { | |
"default": build_sam_vit_b, | |
"vit_h": build_sam_vit_h, | |
"vit_l": build_sam_vit_l, | |
"vit_b": build_sam_vit_b, | |
} | |
def _build_sam( | |
args, | |
encoder_embed_dim, | |
encoder_depth, | |
encoder_num_heads, | |
encoder_global_attn_indexes, | |
checkpoint=None, | |
): | |
prompt_embed_dim = 256 | |
image_size = args.image_size | |
vit_patch_size = 16 | |
image_embedding_size = image_size // vit_patch_size | |
sam = Sam( | |
args, | |
image_encoder=ImageEncoderViT( | |
args = args, | |
depth=encoder_depth, | |
embed_dim=encoder_embed_dim, | |
img_size=image_size, | |
mlp_ratio=4, | |
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), | |
num_heads=encoder_num_heads, | |
patch_size=vit_patch_size, | |
qkv_bias=True, | |
use_rel_pos=True, | |
# use_rel_pos=False, | |
global_attn_indexes=encoder_global_attn_indexes, | |
window_size=14, | |
out_chans=prompt_embed_dim, | |
), | |
prompt_encoder=PromptEncoder( | |
embed_dim=prompt_embed_dim, | |
image_embedding_size=(image_embedding_size, image_embedding_size), | |
input_image_size=(image_size, image_size), | |
mask_in_chans=16, | |
), | |
mask_decoder=MaskDecoder( | |
num_multimask_outputs=args.multimask_output, | |
transformer=TwoWayTransformer( | |
depth=2, | |
embedding_dim=prompt_embed_dim, | |
mlp_dim=2048, | |
num_heads=8, | |
), | |
transformer_dim=prompt_embed_dim, | |
iou_head_depth=3, | |
iou_head_hidden_dim=256, | |
), | |
pixel_mean=[123.675, 116.28, 103.53], | |
pixel_std=[58.395, 57.12, 57.375], | |
) | |
sam.eval() | |
checkpoint = Path(checkpoint) | |
if checkpoint.name == "sam_vit_b_01ec64.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_b_01ec64.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-B checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
elif checkpoint.name == "sam_vit_h_4b8939.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_h_4b8939.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-H checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
elif checkpoint.name == "sam_vit_l_0b3195.pth" and not checkpoint.exists(): | |
cmd = input("Download sam_vit_l_0b3195.pth from facebook AI? [y]/n: ") | |
if len(cmd) == 0 or cmd.lower() == 'y': | |
checkpoint.parent.mkdir(parents=True, exist_ok=True) | |
print("Downloading SAM ViT-L checkpoint...") | |
urllib.request.urlretrieve( | |
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
checkpoint, | |
) | |
print(checkpoint.name, " is downloaded!") | |
if checkpoint is not None: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f) | |
# Create a new state dictionary with only the parameters that exist in the model | |
new_state_dict = {k: v for k, v in state_dict.items() if k in sam.state_dict() and sam.state_dict()[k].shape == v.shape} | |
sam.load_state_dict(new_state_dict, strict = False) | |
return sam | |