Spaces:
Configuration error
Configuration error
import sys | |
import numpy | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.optim.lr_scheduler import _LRScheduler | |
import torchvision | |
import torchvision.transforms as transforms | |
import torchvision.utils as vutils | |
from torch.utils.data import DataLoader | |
from dataset import Dataset_FullImg, Dataset_DiscRegion | |
import math | |
import PIL | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import collections | |
import logging | |
import math | |
import os | |
import time | |
from datetime import datetime | |
import dateutil.tz | |
from typing import Union, Optional, List, Tuple, Text, BinaryIO | |
import pathlib | |
import warnings | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont, ImageColor | |
from lucent.optvis.param.spatial import pixel_image, fft_image, init_image | |
from lucent.optvis.param.color import to_valid_rgb | |
from torchvision.models import vgg19 | |
import torch.nn.functional as F | |
import cfg | |
import warnings | |
from collections import OrderedDict | |
import numpy as np | |
from tqdm import tqdm | |
from PIL import Image | |
import torch | |
args = cfg.parse_args() | |
device = torch.device('cuda', args.gpu_device) | |
cnn = vgg19(pretrained=True).features.to(device).eval() | |
content_layers_default = ['conv_4'] | |
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] | |
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) | |
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device) | |
class ContentLoss(nn.Module): | |
def __init__(self, target,): | |
super(ContentLoss, self).__init__() | |
# we 'detach' the target content from the tree used | |
# to dynamically compute the gradient: this is a stated value, | |
# not a variable. Otherwise the forward method of the criterion | |
# will throw an error. | |
self.target = target.detach() | |
def forward(self, input): | |
self.loss = F.mse_loss(input, self.target) | |
return input | |
def gram_matrix(input): | |
a, b, c, d = input.size() # a=batch size(=1) | |
# b=number of feature maps | |
# (c,d)=dimensions of a f. map (N=c*d) | |
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL | |
G = torch.mm(features, features.t()) # compute the gram product | |
# we 'normalize' the values of the gram matrix | |
# by dividing by the number of element in each feature maps. | |
return G.div(a * b * c * d) | |
class StyleLoss(nn.Module): | |
def __init__(self, target_feature): | |
super(StyleLoss, self).__init__() | |
self.target = gram_matrix(target_feature).detach() | |
def forward(self, input): | |
G = gram_matrix(input) | |
self.loss = F.mse_loss(G, self.target) | |
return input | |
# create a module to normalize input image so we can easily put it in a | |
# nn.Sequential | |
class Normalization(nn.Module): | |
def __init__(self, mean, std): | |
super(Normalization, self).__init__() | |
# .view the mean and std to make them [C x 1 x 1] so that they can | |
# directly work with image Tensor of shape [B x C x H x W]. | |
# B is batch size. C is number of channels. H is height and W is width. | |
self.mean = torch.tensor(mean).view(-1, 1, 1) | |
self.std = torch.tensor(std).view(-1, 1, 1) | |
def forward(self, img): | |
# normalize img | |
return (img - self.mean) / self.std | |
def run_precpt(cnn, normalization_mean, normalization_std, | |
content_img, style_img, input_img, | |
style_weight=1000000, content_weight=1): | |
model, style_losses, content_losses = precpt_loss(cnn, | |
normalization_mean, normalization_std, style_img, content_img) | |
# We want to optimize the input and not the model parameters so we | |
# update all the requires_grad fields accordingly | |
model.requires_grad_(False) | |
input_img.requires_grad_(True) | |
model(input_img) | |
style_score = 0 | |
content_score = 0 | |
for sl in style_losses: | |
style_score += sl.loss | |
for cl in content_losses: | |
content_score += cl.loss | |
content_weight = 100 | |
style_weight = 100000 | |
style_score *= style_weight | |
content_score *= content_weight | |
loss = style_score + content_score | |
# loss = content_score | |
return loss | |
def precpt_loss(cnn, normalization_mean, normalization_std, | |
style_img, content_img, | |
content_layers=content_layers_default, | |
style_layers=style_layers_default): | |
# normalization module | |
normalization = Normalization(normalization_mean, normalization_std).to(device) | |
# just in order to have an iterable access to or list of content/syle | |
# losses | |
content_losses = [] | |
style_losses = [] | |
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential | |
# to put in modules that are supposed to be activated sequentially | |
model = nn.Sequential(normalization) | |
i = 0 # increment every time we see a conv | |
for layer in cnn.children(): | |
if isinstance(layer, nn.Conv2d): | |
i += 1 | |
name = 'conv_{}'.format(i) | |
elif isinstance(layer, nn.ReLU): | |
name = 'relu_{}'.format(i) | |
# The in-place version doesn't play very nicely with the ContentLoss | |
# and StyleLoss we insert below. So we replace with out-of-place | |
# ones here. | |
layer = nn.ReLU(inplace=False) | |
elif isinstance(layer, nn.MaxPool2d): | |
name = 'pool_{}'.format(i) | |
elif isinstance(layer, nn.BatchNorm2d): | |
name = 'bn_{}'.format(i) | |
else: | |
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) | |
model.add_module(name, layer) | |
if name in content_layers: | |
# add content loss: | |
target = model(content_img).detach() | |
content_loss = ContentLoss(target) | |
model.add_module("content_loss_{}".format(i), content_loss) | |
content_losses.append(content_loss) | |
if name in style_layers: | |
# add style loss: | |
if style_img.size(1) == 1: | |
style_img = style_img.expand(style_img.size(0),3, style_img.size(2),style_img.size(3)) | |
target_feature = model(style_img).detach() | |
style_loss = StyleLoss(target_feature) | |
model.add_module("style_loss_{}".format(i), style_loss) | |
style_losses.append(style_loss) | |
# now we trim off the layers after the last content and style losses | |
for i in range(len(model) - 1, -1, -1): | |
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss): | |
break | |
model = model[:(i + 1)] | |
return model, style_losses, content_losses | |