File size: 4,673 Bytes
de38b77
 
 
 
 
 
 
 
 
4c6dd82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de38b77
 
 
 
4c6dd82
 
 
de38b77
4c6dd82
 
 
 
 
 
 
 
 
 
 
 
de38b77
 
4c6dd82
 
 
 
 
de38b77
 
 
 
 
 
 
 
 
4c6dd82
 
 
 
 
 
 
 
 
de38b77
4c6dd82
 
de38b77
 
4c6dd82
de38b77
 
4c6dd82
 
 
 
 
 
 
 
 
 
 
de38b77
 
4c6dd82
 
 
 
 
de38b77
4c6dd82
de38b77
4c6dd82
 
 
 
 
de38b77
 
4c6dd82
 
 
 
 
de38b77
4c6dd82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de38b77
4c6dd82
de38b77
 
4c6dd82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from transformers import pipeline
import requests
import json
import time
import threading

# Load AI models
def load_models():
    models = {}
    try:
        # Text generation model (using smaller open source alternative)
        models["gpt2"] = pipeline("text-generation", model="gpt2")
        
        # Classification models
        models["bert-base"] = pipeline("text-classification", model="bert-base-uncased")
        models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
        
        # Cybersecurity specific models
        models["phishing-bert"] = pipeline(
            "text-classification",
            model="deepset/bert-base-cased-squad2"  # Using a QA model that can be fine-tuned for security
        )
        
    except Exception as e:
        print(f"Error loading models: {str(e)}")
        # Fallback to at least one working model
        models["distilbert"] = pipeline("text-classification", model="distilbert-base-uncased")
    
    return models

# Define functions to interact with AI models
def analyze_text(text, model_name):
    if not text.strip():
        return "Please provide some text to analyze."
        
    model = models.get(model_name)
    if not model:
        return f"Model {model_name} not found. Available models: {', '.join(models.keys())}"
    
    try:
        if model_name == "gpt2":
            result = model(text, max_length=100, num_return_sequences=1)
            return result[0]['generated_text']
        else:
            result = model(text)
            return str(result)
    except Exception as e:
        return f"Error analyzing text: {str(e)}"

def analyze_file(file, model_name):
    try:
        content = file.read().decode("utf-8")
        return analyze_text(content, model_name)
    except Exception as e:
        return f"Error processing file: {str(e)}"

# Real-time monitoring and alerting
alert_thresholds = {
    "phishing": 0.8,
    "malware": 0.8,
    "anomaly": 0.8
}

def monitor_real_time_data(data_stream, model_name):
    if not data_stream.strip():
        return "Please provide a data stream URL or content."
        
    try:
        # For demo purposes, we'll analyze the provided text as a single data point
        result = analyze_text(data_stream, model_name)
        return f"Monitoring result: {result}"
    except Exception as e:
        return f"Error monitoring data: {str(e)}"

# Load models at startup
models = load_models()

# Gradio interface
def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Cybersecurity AI Platform")
        
        with gr.Tab("Text Analysis"):
            text_input = gr.Textbox(
                label="Enter text for analysis",
                placeholder="Enter text here..."
            )
            model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                value=list(models.keys())[0],
                label="Select AI Model"
            )
            text_output = gr.Textbox(label="Analysis Result")
            text_button = gr.Button("Analyze Text")
            text_button.click(
                analyze_text,
                inputs=[text_input, model_dropdown],
                outputs=text_output
            )

        with gr.Tab("File Analysis"):
            file_input = gr.File(label="Upload file for analysis")
            file_model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                value=list(models.keys())[0],
                label="Select AI Model"
            )
            file_output = gr.Textbox(label="Analysis Result")
            file_button = gr.Button("Analyze File")
            file_button.click(
                analyze_file,
                inputs=[file_input, file_model_dropdown],
                outputs=file_output
            )

        with gr.Tab("Real-time Monitoring"):
            stream_input = gr.Textbox(
                label="Enter data stream content",
                placeholder="Enter data to monitor..."
            )
            stream_model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                value=list(models.keys())[0],
                label="Select AI Model"
            )
            stream_output = gr.Textbox(label="Monitoring Result")
            stream_button = gr.Button("Start Monitoring")
            stream_button.click(
                monitor_real_time_data,
                inputs=[stream_input, stream_model_dropdown],
                outputs=stream_output
            )

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch()